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Abstract

We examine a generalization of a Monte Carlo procedure commonly used to
model the missing transverse energy spectrum of W → τν events. This procedure
introduces correlations between spectrum bins, thereby invalidating the usual
multinomial error structure. We compute the errors on the bin contents from
first principles.

1 Problem Setup

A common technique for generating the distribution of a random variable Z that is
itself a function c( ~X, ~Y ) of two possibly multidimensional, possibly dependent random

variables ~X and ~Y , is the following:

1. Draw a number n of variates distributed as ~X;

2. For each ~X:

(a) Draw a number k of variates distributed as ~Y given ~X;

(b) Compute Z = c( ~X, ~Y );

3. Histogram the Z’s.

This technique can be applied to the modeling of the missing transverse energy spec-
trum of events containing W → τν decays, where one must combine contributions from
the W decay neutrino and from the tau lepton. A typical procedure is to substitute
Monte Carlo tau decays for the muons in a data sample of W → µν events. When the
size of the muon data sample is limited, the precision of the result can be increased
by substituting several tau decays for each available muon. However, this introduces
nontrivial correlations between spectrum bins, because a given W → µν event can now
contribute to more than one bin (only in the special case k = 1 are the correlations
purely multinomial).

The question we wish to address is how to calculate the errors on the bin contents
of the Z histogram in general. We derive these errors in the next section.
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2 2 SOLUTION

2 Solution

We adopt the standard statistical convention of designating random variables with
capital letters and their observed values with the corresponding small-case letters. Let
f(~x) be the probability density of ~X and g(~y | ~x) that of ~Y given ~X. Define further:

Mab ≡ number of Z values in bin [za, zb] coming from a given ~X

(observed values of Mab will be written as mab(~x) to indicate

their association with observed values of ~X);

Nab ≡ total number of Z values in [za, zb] : nab =
n∑

i=1

mab(~xi); (2.1)

n′
ab ≡

n∑
i=1

[mab(~xi)]
2.

The crucial insight is that within a given Z bin [za, zb] the Mab are independent, since

each of them is obtained by drawing a new ~X from f(~x) and k new ~Y ’s from g(~y | ~x). In
addition, the Mab are identically distributed since the same f and g are used through-
out. We therefore have, from Eq. (2.1):

Var(Nab) = n Var(Mab). (2.2)

An unbiased estimate of the expectation E(Mab) is nab/n, and the corresponding un-
biased estimate of Var(Mab) is then:

Var(Mab) =
1

n− 1

n∑
i=1

(
mab(~xi) −

nab

n

)2

=
1

n− 1

(
n′

ab −
n2

ab

n

)
. (2.3)

Therefore:

Var(Nab) =
n

n− 1

(
n′

ab −
n2

ab

n

)
. (2.4)

Note that if k = 1 all the mab(~xi) are either 0 or 1, so that n′
ab = nab and the above

formula reduces to the standard binomial case. More importantly, Eq. (2.4) expresses
Var(Nab) in terms of quantities that are directly accessible when making the histogram;
there is no need to run large ensembles of toy experiments to figure out the uncertainties
on the bin contents. The histogramming procedure could be something like this:

1 Initialize histograms H1, H2, and H3 with B bins from zmin to zmax.
2 For i = 1, . . . , n:
3 Generate ~xi ∼ f(~x).
4 Zero histogram H3.
5 For j = 1, . . . , k:
6 Generate ~yij ∼ g(~y | ~xi).
7 Set zij = c(~xi, ~yij).
8 Histogram zij in H1.
9 Histogram zij in H3.
10 Add the square of H3 to H2, bin by bin.

11 Compute H4 ≡
√

n
n−1 [H2 −H2

1/n] (also bin by bin).

Histogram H4 then contains the estimated errors on the bins of histogram H1.
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3 Example

We illustrate our result with an example that is somewhat inspired by the W → τν
problem. Suppose ~X and ~Y are two-dimensional vectors generated as follows:

~X ≡ (X1, X2) ≡ (U cos S, U sin S) : U ∼ 1

τ
e−u/τ , S ∼ U [0, 2π[, (3.1)

~Y ≡ (Y1, Y2) ≡ (V cos T, V sin T ) : V |U ∼ N (u, σ2), T ∼ U [0, 2π[, (3.2)

where τ and σ are known constants. In words, ~X has an exponentially distributed
magnitude, ~Y a Gaussian distributed magnitude conditional on the magnitude of ~X,
and both have uniform azimuth. One could think of ~X as the missing transverse energy
of the neutrino from W decay and ~Y as that of the tau lepton, although the above
distributions are motivated by convenience rather than by any resemblance with real
physics processes. The combination rule c( ~X, ~Y ) is the magnitude of ~X + ~Y :

Z = c( ~X, ~Y ) =
√

(X1 + Y1)2 + (X2 + Y2)2 =
√

U2 + V 2 + 2UV cos(S − T ). (3.3)

We generated 50,000 toy experiments with τ = σ = 1, n = 10, and k = 100. The results
are displayed in Fig. 1. The left panel shows agreement between the toy experiment
averages of the estimated variances of the bin contents and the toy experiment variances
of the bin contents, indicating that the variance estimated with eq. (2.4) is unbiased.
The right panel shows the same with standard deviation instead of variance. Here
we do see some bias at low bin contents, where the estimated standard deviation
underestimates the “true” standard deviation. This behavior is expected since bias is
not invariant under nonlinear transformations such as the square root. Furthermore,
the square root is a concave function, so that by Jensen’s inequality the estimated
standard deviation should indeed underestimate.

Figure 1: Result of 50,000 toy experiments with τ = σ = 1, n = 10, and k = 100.
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