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Abstract

In their Comment, Grientschnig and Lira derive a Bayesian reference prior for cross section mea-

surements that turns out to be identical to one obtained by L. Demortier, S. Jain, and H. B. Prosper

[Phys. Rev. D 80, 034002 (2010)]. Since the new derivation uses a different sequence of compact

sets to normalize the reference prior, this result points to a certain robustness of posterior infer-

ences in this approach. However, Grientschnig and Lira make some additional claims about their

methodology, which we show to be unwarranted.
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I. INTRODUCTION

In the abstract and introduction of their Comment, Grientschnig and Lira assert that

the reference prior and posterior derived in our paper [1] were found to depend on the

sequence of compact subsets of parameter space used for a normalization procedure. This

is an incorrect reading of our paper. Indeed, we merely discovered that a simple, plausible

choice of subsets leads to a posterior that is improper for some realizations of the underlying

model and must therefore be dismissed. We then proposed a different sequence of subsets,

found the resulting posterior to be proper, and presented the latter as a usable reference

posterior for the problem at hand. We did not address the notoriously difficult question of

the uniqueness of this posterior with respect to changes in compact set sequence. The fact

that Grientschnig and Lira have now derived the same posterior from a different sequence

is of course an encouraging result from the point of view of uniqueness.

In our opinion however, Grientschnig and Lira go one step too far by stating that their

analysis “questions the manner in which [our result] was achieved.” They base this state-

ment on the fact that we did not make use of “a sufficient condition for uniquely defining

the reference prior”, and on their belief that “if [the reference prior] were not unique an

unsatisfactory ambiguity of the interpretation of measurement results would arise”. They

subsequently address the uniqueness problem by making two claims, (1) that in every prob-

lem of inference one can identify an “original parametrization”, and (2) that it is this original

parametrization that should be used to construct the compact sets. They refer to this sec-

ond claim as a “principle”, and as the “original parametrization rule”. As we will show,

these claims are neither compelling nor supported by the literature on reference priors. We

briefly review what this literature has to say about compact sets in Sec. II, expand on the

motivation for our choice of compact sets in Sec. III, and return to the claims of Grientschnig

and Lira in Sec. IV.

II. COMPACT SETS IN THE LITERATURE ON REFERENCE PRIORS

Although compact sets are technically not needed to obtain reference priors for single-

parameter models [2], there seems to be no way to avoid them in multi-parameter settings.

This feature can be traced back to the stepwise nature of the general reference prior construc-
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tion [3]. In brief, when multiple parameters are present, they must first be sorted by order

of inferential importance. Next, at each step of the algorithm one constructs a conditional

reference prior for one parameter given all the remaining ones in the ordered sequence. If the

parameter space Θ is unbounded, this conditional prior is typically improper, and therefore

only defined up to a proportionality constant that may depend on the parameters that were

conditioned on. To fix this dependence, one introduces a sequence of nested compact sets Θ`

that converges to the whole space Θ, and normalizes the conditional prior over an arbitrary

Θ`. After all steps are completed, the reference posterior on Θ` is obtained from Bayes’

theorem, and the limit Θ` → Θ is taken.

Whereas the compact set normalization procedure arises as a purely mathematical device

to resolve an indeterminacy in the reference prior construction, the compact sets themselves

do have a more general meaning, regardless of whether the model has one parameter or

many. Indeed, in all practical measurement problems, the physical parameter space that

one is trying to model is actually bounded. However, it is usually not easy to specify its

boundary, and one therefore uses the unbounded space as an approximation to the physical

space [2]. Thus Bernardo writes that “one should always consider a probability model

endowed with an appropriate compact approximation to its parameter space, which should

then be kept fixed, via the appropriate transformations, for all inference problems considered

within that model” [4, p. 187 (emphasis in the original)].

How then should the compact sets be chosen? Berger and Bernardo admit they “have no

clear-cut answer to this question, precisely because a dependence of the solution on the Θ`

is essentially an indication that some subjective input is needed; one cannot unambiguously

define a reference prior” [5, p. 205]. Nevertheless, in Ref. [6, p. 42] they provide the follow-

ing guideline: “Choosing the Θ` to be natural sets in the original parametrization has always

worked well in our experience. Indeed, the way we think of the Θ` is that there is some large

compact set on which we are really noninformative, but we are unable to specify the size

of this set. We might, however, be able to specify a shape, Ω, for this set, and would then

choose Θ` = ` Ω∩Θ, where ` Ω consists of all points in Ω multiplied by `.” In situations more

complex than location-scale problems however, Bernardo introduces approximate location

parametrizations, which he defines as parametrizations for which the reference prior is uni-

form. He then suggests that “reparametrization to asymptotically independent parameters

and approximate location reparametrizations [. . . ] may be combined to choose appropriate
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approximating sequences” [3, §3.8] (see also Ref. [4, p. 187], which points to [7]).

As the above summary indicates, the problem of choosing compact sets, while not a

major issue in the theory of reference priors, is far from settled. Describing directions for

further research in Ref. [4, p. 171], Bernardo lists in first place the need to obtain “a general

definition of the appropriate bounded approximation”. Later in the same paper he adds that

“the necessary approximation of open parameter spaces by convergent compact sequences

in order to derive the reference distributions certainly requires further work” [4, p. 187].

III. THE CHOICE OF COMPACT SETS IN OUR PAPER

In [1] we wrote: “The theory of reference priors currently does not provide guidelines for

choosing the compact sets Θ`, other than to require that the resulting posterior be proper.

In most cases this choice makes no difference and one is free to base the choice of compact

sets on considerations of simplicity and convenience.” Simplicity and convenience were

our way to summarize Berger and Bernardo’s suggestion that “most frequently it would

probably be natural to choose the Θ` to be simple sets (rectangles, spheres, etc.) in the

original parametrization of the problem; initially chosen parametrizations are often ones in

which the analyst is roughly noninformative over natural sets” [5, p. 205]. Since our initial

parametrization was in terms of the signal cross section σ, the effective integrated luminosity

ε, and the background contamination µ, we simply constructed rectangular sets of the form

Θ` =
{

(σ, ε, µ) : σ ∈ [0, u`], ε ∈ [0, v`], µ ∈ [0, w`]
}

, (1)

where {u`}, {v`}, and {w`} are increasing sequences of positive constants. This led to the

following conditional reference prior for σ given ε and µ:

πR(σ | ε, µ) dσ ∝
√

ε

ε σ + µ
dσ. (2)

When we discovered that this prior leads to an improper posterior for some form of the

evidence-based prior for ε, we asked Berger and Sun, the authors of [8], for advice. They

did not find fault with our interpretation of “original parametrization”, but noted that the

resulting prior (2) depends on the parameter of interest σ only through the product εσ. Any

proper prior with this property would be invariant under multiplication of σ and division of

ε by the same constant, that is, it would be of the form ε f(εσ) dσ, which (2) isn’t. Berger
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and Sun then suggested that we construct rectangular sets in the parametrization {σ̃, ε, µ},

where σ̃ ≡ εσ. As indicated in our paper, the resulting prior,

πR1(σ | ε, µ) dσ ∝ ε√
εσ + µ

dσ, (3)

has the desired invariance property and leads to a posterior that is proper regardless of the

form of the evidence-based prior for the problem.

IV. EVALUATION OF THE CLAIMS MADE IN THE COMMENT

Our overview of the literature on compact sets failed to find a compelling and unambigu-

ous “principle” or “general rule” to settle their choice. What we did find is an admission

that some subjective input may be needed, a statement that further work is required, and a

couple of guidelines, namely to try a “natural” parametrization, or perhaps an approximate

location-scale parametrization. The exact meaning of “natural” is left largely unspecified.

On the other hand, Grientschnig and Lira claim to have identified a family of models where

the concept of natural parametrization is unambiguous. They write, unequivocally, “If the

parameter of interest is a function of parameters originating from different sampling distri-

butions that have no parameters in common, the original parametrization consists of these

parameters.” This is the basis of their derivation of the reference prior for cross section

measurements.

As shown in Sec. III, we started from a different interpretation of “natural parametriza-

tion”, but eventually obtained the same result as Grientschnig and Lira. They claim that

their derivation questions the manner in which our result was achieved. For this to be true,

it seems to us that Grientschnig and Lira should demonstrate that their definition of origi-

nal parametrization has special merits, for example that it can be derived from foundational

considerations or that it is guaranteed to deliver a posterior with good properties within

the family of models they identified. Unfortunately they do not go beyond re-deriving our

original result.

In the final analysis, if two sequences of compact sets were to lead to different posteriors

for the same problem (see Ref. [5] for an example), how should one decide which sequence

is best? Would it be acceptable to prefer one sequence simply because it is based on a

general principle? Or should the decision be based instead on an objective assessment of the
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properties of the resulting posteriors: whether they are proper, have acceptable repeated

sampling properties, yield posterior expectations that are consistent, etc. It is the latter

approach that Berger and Bernardo followed in Ref. [5] and that we took in our paper.

Thus, while the adoption of a single general rule for the construction of compact sets would

guarantee the uniqueness of the resulting posterior, it would be premature to do this without

a better theoretical understanding of the effect of various rules on posterior inferences. Given

the current lack of such understanding, we caution users of reference priors against the

mindless application of general guidelines.

Finally, we are puzzled by the criticism Grientschnig and Lira direct against a prior of

the form exp(−ε)/
√

πε for the effective luminosity ε (Sec. III of the Comment). They

correctly point out that the prior probability density of ε is infinite at ε = 0, and that the

cross section σ cannot be measured when ε = 0. However, the occurrence of ε = 0 has

zero prior probability and will therefore almost surely not happen. In any case the density

exp(−ε)/
√

πε is a valid prior. For an evidence-based interpretation, one can think of it as

the reference posterior of an auxiliary measurement of ε, derived from the Poisson likelihood

exp(−ε)εx/x! and Jeffreys’ rule 1/
√

ε, in the (admittedly undesirable) situation where no

events are observed in the time allotted to the measurement (x = 0). Once the acceptability

of exp(−ε)/
√

πε as a prior is recognized, any method that claims to be broadly applicable

and general ought to be able to deal with it. As we showed in [1], this is the case of the

reference prior method, provided one uses the compact set sequence we proposed.

Grientschnig and Lira subsequently express concern that a different choice of evidence-

based prior may require a change in compact set sequence in order to achieve posterior

propriety, and that this “contradicts a basic property of reference priors with partial infor-

mation, namely that they do not depend on the probability distribution encoding the partial

information.” This objection puts the cart before the horse: the basic property it refers to

only applies after an appropriate sequence of compact sets has been found [8]; hence the

supposed contradiction cannot take place.

In summary, we still do not have a general rule for constructing a compact set sequence

that guarantees a proper and well-behaved posterior. Fortunately, given the large number

of problems to which the reference prior methodology has been successfully applied, this

compact set difficulty appears to be of minor consequence in practice.
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