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1. Introduction

The primary goal of these lectures is to review the basic statistical concepts

needed to understand and interpret experimental results in the high energy

physics literature. These results are typically formulated in terms of point

estimates, intervals, p values, likelihood functions, Bayes factors, and/or

posterior probabilities. Knowing the meaning of these quantities, their lim-

itations, and the rigorous methods needed to extract them from data, will

help in evaluating the reliability of published results. A secondary goal is

to provide some tools to phenomenologists who would like to estimate the

sensitivity of a particular experiment to a model of new physics.

These goals are facilitated by the availability of many web resources. For

example, several experimental collaborations have formed internal statistics

committees whose purpose is to make recommendations on proper statis-

tical methods, to act as consultants on specific data analyses, and to help

with the comparison and combination of experimental results from different

experiments; some of these committees have public web pages with plenty

of useful information.1–3 In addition, high energy physicists and astrophysi-

cists regularly meet with professional statisticians to discuss problems and



March 31, 2009 17:45 WSPC - Proceedings Trim Size: 9in x 6in statistics

2

methods. These so-called PhyStat meetings have their own webpages and

proceedings.4–9 Finally, there is a repository of statistics software and other

resources at http://phystat.org, and professional statistics literature is

available online through http://www.jstor.org.

We begin our review with a discussion of the frequentist and Bayesian

concepts of probability in section 2. This is followed by sections on hypothe-

sis testing and interval estimation. Section 5 combines these two methodolo-

gies in the design of search procedures, which are at the heart of everyone’s

hopes for the success of the LHC program. Finally, section 6 contains some

remarks about systematic uncertainties.

2. What Is Probability?

There is a long-standing philosophical dispute on the appropriate definition

of probability, between two contenders known as frequentism and Bayesian-

ism. This dispute has interesting implications both for the interpretation

of scientific measurements and for the determination of quantum states.

2.1. Frequentism

Frequentists attempt to define probabilities as relative frequencies in se-

quences of trials. This corresponds to the common-sense intuition that if,

for example, we toss a coin a large number of times, we can use the fraction

of times it falls heads up as an estimate of the probability of “heads up”,

and this estimate becomes more accurate as the total number of tosses

increases. To physicists this is a very attractive aspect of the frequentist

definition: probabilities are postulated to be real, objective quantities that

exist “outside us” and can be measured just as the length of a table or the

weight of a book. Unfortunately it is very difficult to formulate a rigorous,

non-circular definition of probability in terms of sequences of trials.10 One

possibility is to define probability as the limiting relative frequency in an

infinite sequence of trials, or as the limiting relative frequency which would

be obtained if the sequence of trials were extended to infinity. However, un-

like a table or a book, infinite sequences are unobservable to finite beings

like us. Furthermore, they may not even be empirically relevant. If at some

point very far into an infinite sequence, the probability of interest suddenly

changes by a discrete amount, this will affect the “infinite-sequence” value

of the probability, but why should we care if we do not get to live until that

point? Thus from a practical point of view it would seem more sensible to

define the probability of an event as the relative frequency of that event in
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a sufficiently long sequence of trials. This is clearly a much weaker defini-

tion though. Indeed, given a finite number of trials, every sequence has a

non-zero probability of occurring, and therefore also every probability value

allowed by the discreteness of the measurement. The only way to resolve

the difficulties in the frequentist definition of probability is to assume that

the trials in the defining sequence are independent and equally probable.

Hence the circularity: we need the concept of equal probability in order to

be able to define probability.

Setting aside these foundational problems, the frequentist definition of

probability seriously constrains the type of inferences that can be made.

Indeed, according to frequentism, a random variable is a physical quantity

that fluctuates from one observation to the next. Hence it is not possible

to assign a meaningful probability value to a statement such as “the true

mass MH of the Higgs boson is between 150 and 160 GeV/c2”, since MH

is a fixed constant of nature. Frequentism therefore needs an additional,

separate concept to describe the reliability of inferences: this is the concept

of confidence. As applied to interval estimates of MH , confidence represents

the probability that the measurement procedure will yield an interval that

contains the true value of MH if the experiment is repeated a large number

of times; it does not represent the probability that the numerical interval

actually obtained from the data at hand contains that true value. Thus,

even though confidence is defined in terms of probability, it should not

be confused with the latter since it is applied to statements to which a

(non-trivial) frequentist probability value cannot be assigned.

The objective of frequentist statistics is then to transform measurable

probabilities of observations into confidence statements about physics pa-

rameters, models, and hypotheses. This transformation is not unique how-

ever. In the great variety of measurement situations, frequentism offers

many “ad hoc” rules and procedures. In contrast with Bayesianism, to be

described next, there is no unique frequentist principle that guides the pro-

cess of drawing inferences.

2.2. Bayesianism

Bayesianism makes a strict distinction between propositions and probabili-

ties.11 Propositions include statements such as “the Higgs mass is between

150 and 160 GeV/c2”, and “it will rain tomorrow”. These are either true or

false. On the other hand, Bayesian probabilities are degrees of belief about

the truth of some proposition. They are themselves not propositions and

are therefore neither true nor false. In contrast with frequentist probability,
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which claims to be a measurable physical reality, Bayesian probability is a

logical construct.

It can be shown that coherent degrees of belief satisy the usual rules

of probability theory. The Bayesian paradigm is therefore entirely based

on the latter, viewed as a form of extended logic:12 a process of reasoning

by which one extracts uncertain conclusions from limited information. This

process is guided by Bayes’ theorem, which prescribes how degrees of belief

about a parameter θ ∈ Θ are to be updated when new data x become

available:

π(θ |x) =
p(x | θ) π(θ)

mprior(x)
. (1)

On the left-hand side, the quantity π(θ |x) represents the posterior prob-

ability density of θ, after having observed data value x. It is expressed as

a function of the prior probability density π(θ) and the likelihood function

p(x | θ), which is the probability density of the data x for a given value of

θ, viewed as a function of θ; to emphasize this view, the likelihood is some-

times written as L(θ |x). Finally, the denominator mprior(x) is the marginal

distribution of x, also called prior-predictive distribution, or evidence, de-

pending on the context:

mprior(x) ≡
∫

Θ

p(x | θ) π(θ) dθ. (2)

All the basic tools of Bayesian statistics are direct applications of prob-

ability theory. A typical example is marginalization. Suppose we have a

model for some data that depends on two parameters, θ and λ, but that

we are only interested in θ. The posterior density of θ can then be obtained

from the joint posterior of θ and λ by integration:

π(θ |x) =

∫

Λ

π(θ, λ |x) dλ. (3)

Another useful example involves prediction. Suppose we observe data x and

wish to predict the distribution of future data y. This can be done via the

posterior-predictive distribution:

mpost(y |x) =

∫

Θ

p(y | θ) π(θ |x) dθ. (4)

We emphasize that the output of a Bayesian analysis is always the full

posterior distribution (1). The latter can be summarized in various ways,

by providing point estimates, interval estimates, hypothesis probabilities,

predictions for new data, etc., but the summary should not be substituted

for the “whole story”.
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2.2.1. Bayesian Priors: Evidence-Based Constructions

The elicitation of prior probabilities on an unknown parameter or incom-

pletely specified model is often difficult work, especially if the parameter

or model is multidimensional and prior correlations are present. In particle

physics we can usually construct so-called evidence-based priors for param-

eters such as the position of a detector element, an energy scale, a tracking

efficiency, or a background level. Such priors are derived from subsidiary

data measurements, Monte Carlo studies, and theoretical beliefs.

If for example the position of a detector is measured to be x0±∆x, and

∆x is accurately known, it will be sensible to make the corresponding prior

a Gaussian distribution with mean x0 and standard deviation ∆x. On the

other hand, for an energy scale, which is usually a positive quantity, it will

be more natural to use a gamma distribution, and for an efficiency bounded

between 0 and 1 a beta distribution should be appropriate. In each of these

cases, other functional forms should be tried to assess the robustness of the

final analysis result to changes in prior shape. Note that evidence-based

priors are always proper, that is, they integrate to 1.

2.2.2. Bayesian Priors: Formal Constructions

In physics data analysis we often need to extract information about a pa-

rameter θ about which very little is known a priori, or perhaps we would

like to pretend that very little is known for reasons of objectivity. How do

we apply Bayes’ theorem in this case? How do we construct the prior π(θ)?

Historically, this problem is the main reason for the development of

alternative statistical paradigms: frequentism, likelihoodism, fiducial prob-

ability, and others. Even Bayesianism has come up with its own solution,

known as objective Bayes. In general, results from these different methods

tend to agree on large data samples, but not necessarily on small sam-

ples (discovery situations). For this reason, statistics committees in various

experiments recommend data analysts to cross-check their results using

alternative methods.

At its most optimistic, objective Bayesianism tries to find a completely

coherent, objective Bayesian methodology for “letting the data speak for

themselves”. A much more modest goal is to provide a collection of useful

methods to learn from the data as part of a robustness study. There are in

fact several approaches to objective Bayesianism, all of which attempt to

construct prior distributions that are minimally informative in some sense.

Some approaches make use of concepts from information theory, others
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exploit the group invariance properties of some problems, and still others

try to produce posterior distributions for which Bayesian credibilities can be

matched with frequentist confidence statements. Bayesian analyses in high

energy physics tend to err on the side of simplicity by using flat priors for

parameters about which nothing is known a priori. The naive justification

for flat priors is that they give the same weight to all parameter values and

therefore represent ignorance. However, flat priors are not invariant under

parameter transformations and they sometimes lead to improper posterior

distributions and other kinds of problems.

Objective priors are also known as neutral, formal, or conventional pri-

ors. Although they are often improper when the parameter space is un-

bounded, they must lead to proper posteriors in order to make sense. A

very important example of objective Bayesian prior is due to Harold Jef-

freys. Suppose the data X have a distribution p(x | θ) that depends on a

single continuous parameter θ; Jeffreys’ prior is then:

πJ(θ) ≡
{

−E

[

∂2

∂θ2
ln p(x | θ)

]}1/2

, (5)

where the expectation is with respect to the data distribution p(x | θ). This

prior illustrates how formal priors depend on the model assumed for the

data; however, they do not depend on the data themselves. When θ is

multidimensional, Jeffreys’ prior tends to misbehave and must be replaced

by the more general reference analysis prescription.13

2.3. Quantum Probabilities

An argument that is sometimes made is that frequentism must be the cor-

rect approach to data analysis because quantum mechanical probabilities

are frequentist.14 This argument is specious however, because the process

by which we learn from our observations is logically distinct from the pro-

cess that generates these observations. Furthermore, advances in quantum

information science have shown that it is possible to interpret quantum

mechanical probabilities as states of knowledge, i.e. as Bayesian.15

Part of the motivation for research into whether quantum probabilities

are frequentist or Bayesian comes from EPR-style arguments. Suppose two

systems A and B are prepared in some entangled quantum state and then

spatially separated. By measuring one of two observables on A alone, one

can immediately write down a new state for B. If one accepts that the “real,

objective state of affairs” at B cannot depend on measurements made at
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A, then the simplest interpretation of the new state for B is that it is a

state of knowledge.

It is possible to develop this idea of quantum states as states of knowl-

edge in a fully consistent way. There are many aspects to this:15

• Subjective probability assignments must follow the standard quan-

tum rule for probabilities (Gleason’s theorem).

• The connection between quantum probability and long-term fre-

quency still holds, but is a non-trivial consequence of Gleason’s

theorem and the concept of maximal information in quantum the-

ory.

• Even quantum certainty (probability-1 predictions for pure states)

is always some agent’s certainty. Any agent-independent certainty

about a measurement outcome would correspond to a pre-existing

system property and would be in conflict with locality.11

Aside from providing yet another interpretation of quantum mechan-

ics, do Bayesian quantum probabilities have any practical consequence?

This is very much an open question. It may be for example, that vacuum

fluctuations represent a Bayesian uncertainty rather than a real, physical

phenomenon. If so, we do not need to worry about their contribution to

the cosmological constant. Arguments for the physical reality of vacuum

fluctuations are usually based on the experimental observations of spon-

taneous emission, the Lamb shift, and the Casimir effect. However E.T.

Jaynes showed that spontaneous emission and the Lamb shift can both be

derived without the need for vacuum fluctuations,16 and R. L. Jaffe proved

this for the Casimir effect.17

2.4. Data Analysis: Frequentist or Bayesian?

With some reasonable care, frequentist and Bayesian inferences generally

agree in large samples. Disagreements tend to appear in small samples,

where prior assumptions play a more important role both for frequentists

and Bayesians. For a small number of problems, the Bayesian and frequen-

tist answers agree exactly, even in small samples.

An often fruitful approach is to start with a Bayesian method, and then

verify if the solution has any attractive frequentist properties. For exam-

ple, if a Bayesian interval is calculated, does the interval contain the true

value of the parameter of interest sufficiently often when the measurement

is repeated? This approach has been formally studied by professional statis-

ticians and is quite valuable.
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On the other hand, if one starts with a purely frequentist method, it is

also important to check its Bayesian properties for a reasonable choice of

prior.

In experimental HEP we often use a hybrid method: a frequentist

method to handle the randomness of the primary observation, combined

with Bayesian techniques to handle uncertainties in auxiliary parameters.

This is not easy to justify from a foundational point of view, but if the

auxiliary parameter uncertainties are small, the overall measurement result

may exhibit acceptable frequentist coverage.

3. Testing a Hypothesis

Hypothesis testing in high energy physics comes up in two very different

contexts. The first one is when we wish to decide between two hypotheses,

in such a way that if we repeat the same testing procedure many times, the

rate of wrong decisions will be fully controlled in the long run. For example,

when selecting good electron candidates for a measurement of the mass of

the W boson, we need to minimize background contamination and signal in-

efficiency. The second context is when we wish to characterize the evidence

provided by the data against a given hypothesis. In searching for new phe-

nomena for example, we need to establish that an observed enhancement

of a given background spectrum is evidence against the background-only

hypothesis, and we need to quantify that evidence.

Traditionally, the first problem is solved by Neyman-Pearson theory and

the second one by the use of p values, likelihood ratios, or Bayes factors.

3.1. The Neyman-Pearson Theory of Testing

Suppose we wish to decide which of two hypotheses, H0 (the “null”) or

H1 (the “alternative”), is more likely to be true given some observation

X. The frequentist strategy is to minimize the probability of making the

wrong decision over the long run. However, that probability depends on

which hypothesis is actually true. There are therefore two types of error

that can be committed:

• Type-I error: Rejecting H0 when H0 is true;

• Type-II error: Accepting H0 when H1 is true.

To fix ideas, suppose that the hypotheses have the form:

H0 : X ∼ f0(x) versus H1 : X ∼ f1(x), (6)
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by which one means that the observation X has probability density f0(x)

under H0 and f1(x) under H1. For the test to be meaningful, f0 and f1

must be distinguishable given the measurement resolution. In other words,

there must be a region C in sample space (the space of all possible data

X) where the observation is much more likely to fall if H1 is true than if

H0 is true. This region is called the critical region of the test and is used as

follows: if the observation X falls inside C, we decide to reject H0, otherwise

we decide to accept it. The Type-I error probability α and the Type-II error

probability β are then given by:

α =

∫

C

f0(x) dx and β = 1 −
∫

C

f1(x) dx. (7)

The probability of correctly accepting the alternative hypothesis equals

1 − β and is known as the power of the test.

In general the critical region C is constructed so as to achieve a suitably

small Type-I error rate α, but there are many possible critical regions that

will yield the same α. The idea of the Neyman-Pearson theory is to choose

the C that minimizes β for a given α. In the above example, the distribu-

tions f0 and f1 are fully specified before the test (this is known as “simple

vs. simple testing”). In this case it can be shown that, in order to minimize

β for a given α, C must be of the form:

C = {x : f0(x)/f1(x) < cα}, (8)

where cα is a constant depending on α. This result is known as the Neyman-

Pearson lemma, and the quantity y ≡ f0(x)/f1(x) is known as the likelihood

ratio statistic.

Unfortunately, f0 and/or f1 are often composite, meaning that they

depend on an unknown, possibly multidimensional parameter θ ∈ Θ. This

happens when the measurement is affected by systematic uncertainties (in

which case θ or one of its components could be an imperfectly known detec-

tor energy scale or tracking efficiency) or when the alternative hypothesis

does not fully specify the value of a parameter of interest (as when θ or

one of its components represents the production cross section for a new

physics process and one is testing whether that cross section is exactly zero

or strictly positive). The likelihood ratio is then defined as:

λ ≡
sup
θ∈Θ0

f0(xobs | θ)

sup
θ∈Θ

f1(xobs | θ)
, (9)

where Θ0 ⊂ Θ is the subspace of θ values allowed by the null hypothesis.

Although the Neyman-Pearson lemma does not generalize to this composite
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situation, the likelihood ratio remains an extremely useful test statistic.

This is partly due to Wilks’ theorem, which states that for large samples the

distribution of −2 ln λ under H0 is that of a chisquared variate with number

of degrees of freedom equal to the difference between the dimensionality of Θ

and that of Θ0. Under some rather general conditions, this theorem can be

used to construct approximate critical regions for finite samples (however,

see section 3.4).

As already stated, the Neyman-Pearson theory of testing is most useful

in data quality control applications, when a given test has to be repeated

on a large sample of identical items. In HEP we use this technique to select

events of a given type. For example, if we want to select a sample of events

to measure the mass of the top quark, we define H0 to be the hypothesis

that a given event contains a top quark, and try to minimize the background

contamination β for a given signal efficiency 1 − α.

On the other hand, this approach to testing is not very satisfactory

when dealing with one-time testing situations, for example when testing a

hypothesis about a new phenomenon such as the Higgs boson or SUSY.

This is because the result of a Neyman-Pearson test is either “accept H0”

or “reject H0”, without consideration for the strength of evidence contained

in the data. In fact, the level of confidence in the decision resulting from the

test is already known before the test: it is either 1−α or 1− β. One would

like a way to quantify evidence from observed data, after the test. The

frequentist solution to this problem uses p values exclusively, whereas the

Bayesian one works with p values, Bayes factors and posterior hypothesis

probabilities.

3.2. The p Value Method for Quantifying Evidence

Suppose we collect some data X and wish to characterize the evidence

contained in X against a hypothesis H0 about the distribution f(x | θ) of the

population from which X was drawn. A general approach is to construct a

test statistic T (X) such that large observed values of T are evidence against

H0 in the direction of some alternative of interest H1. Often a good choice

for T is 1/λ, where λ is the likelihood ratio statistic defined in eq. (9). In

general, different testing problems require different test statistics, and the

observed values of these test statistics cannot be directly compared across

problems. We therefore need a method for calibrating the evidence provided

by T . One way to do this is to calculate the probability for observing T =

tobs or a larger value under H0; this tail probability is known as the p value
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of the test:

p = P(T ≥ tobs |H0). (10)

Thus, small p values are evidence against H0. Typically one will reject

H0 if p ≤ α, where α is some predefined, small error rate. This α has

essentially the same interpretation as in the Neyman-Pearson theory of

testing, but the emphasis here is radically different: with p values we wish

to characterize post-data evidence, a concept which plays no role whatsoever

in the Neyman-Pearson theory. Indeed, the only output of the latter is a

report of acceptance or rejection of H0, together with pre-data expectations

of long-run error rates.

Clearly, the usefulness of p values for calibrating evidence against a null

hypothesis H0 depends on their null distribution being known to the ex-

perimenter and being the same in all problems considered. In principle,

the very definition (10) of a p value guarantees that its distribution under

H0 is uniform. In practice however, this guarantee is rarely fulfilled ex-

actly, either because the test statistic is discrete or because of the presence

of nuisance parameters. The following terminology then characterizes the

true null distribution of p values:

p exact ⇔ P(p ≤ α |H0) = α,

p conservative ⇔ P(p ≤ α |H0) < α,

p liberal ⇔ P(p ≤ α |H0) > α.

Compared to an exact p value, a conservative p value tends to understate

the evidence against H0, whereas a liberal p value tends to overstate it.

In spite of the apparent simplicity of the motivation and definition of

p values, their correct interpretation in terms of evidence is notoriously

subtle. In fact, p values themselves are controversial. Here is partial list of

caveats:

(1) P values are neither frequentist error rates nor confidence levels.

(2) P values are not hypothesis probabilities.

(3) Equal p values do not necessarily represent equal amounts of evidence

(for example, sample size also plays a role).

Because of these and other caveats, it is better to treat p values as nothing

more than useful “exploratory tools,” or “measures of surprise.” In any

search for new physics, a small p value should only be seen as a first step in

the interpretation of the data, to be followed by a serious investigation of

an alternative hypothesis. Only by showing that the latter provides a better
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explanation of the observations than the null hypothesis, can one make a

convincing case for discovery.

3.2.1. The 5σ Discovery Threshold

A small p value has little intuitive appeal, so it is conventional to map it

into the number Nσ of standard deviations a normal variate is from zero

when the probability outside ±Nσ equals k · p, where k = 1 or 2:

p =
2

k

∫ +∞

Nσ

e−x2/2

√
2π

dx =
1

k

[

1 − erf(Nσ/
√

2)
]

. (11)

Experiments at the LHC set k = 2. This choice is not universal however.

The threshold for discovery is typically set at Nσ = 5. This convention

can be traced back to a 1968 paper by A. Rosenfeld,18 where the author

argued that, given the number of histograms examined by high energy

physicists every year, one should expect several 4σ claims per year. He

therefore recommended that experimental groups publish any tantalizing

effect that passes the 3σ threshold, as a recompense for the time and funds

invested in their experiments, but that they take additional data in the

amount needed to confirm a real effect at the 5σ level. As for theorists,

they should always wait for 5σ (or nearly 5σ) effects.

Rosenfeld’s argument was based on what is known as the look-elsewhere

effect, and according to which the probability of a significant background

fluctuation scales with the number of places one looks in. This is a 40-year

old calculation however, and it is legitimate to ask whether the discovery

threshold should be adjusted for the increase in the number and scope of

searches for new physics that have been performed every year since then. A

purely empirical answer is that at the present time there is still no evidence

that the rate of false 5σ claims is running out of control. Sure, there is

the occasional false alarm,19 but this is balanced by the increased sophis-

tication of experimental methods, in particular a better understanding of

particle interactions inside detectors, the investment of large amounts of

computer power in the modeling of background processes and systematic

uncertainties, and the use of “safer” statistical techniques such as blind

analysis.20 In any case, professional statisticians are usually surprised by

the stringency of our discovery threshold, and few of them would trust our

ability to model the tails of distributions beyond 5σ. Thus, raising the cur-

rent discovery threshold could not be justified without first demonstrating

our understanding of such extreme tails.
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3.3. The Problem of Nuisance Parameters in the

Calculation of p Values

Often the distribution of the test statistic, and therefore the p value (10),

depends on parameters that model various uninteresting background pro-

cesses and instrumental features such as calorimeter energy scales and track-

ing efficiencies. The values of these parameters usually have uncertainties

on them, known as systematic uncertainties, and since this complicates the

evaluation of p values the corresponding parameters are referred to as “nui-

sance parameters”. There is obviously considerable interest in methods for

calculating p values that eliminate the dependence on nuisance parameters

while taking into account the corresponding systematic uncertainties. In

fact there are many such methods, but before we discuss them, it is useful

to list some desiderata that we might wish them to satisfy:

(1) Uniformity: the method should preserve the uniformity of the null dis-

tribution of p values. If exact uniformity is not achievable in finite

samples, then asymptotic uniformity should be aimed for.

(2) Monotonicity: for a fixed value of the observation, systematic uncer-

tainties should decrease the significance of null rejections.

(3) Generality: the method should not depend on the testing problem hav-

ing a special structure, but should be applicable to as wide a range of

problems as possible.

(4) Power: all other things being equal, more power is better.

Keeping these criteria in mind, in the following subsections we discuss four

classes of methods for eliminating nuisance parameters: structural, supre-

mum, bootstrap, and predictive. Only the first three of these methods are

compatible with frequentism; the last one requires a Bayesian concept of

probability.

3.3.1. Structural Methods

We label “structural” any purely frequentist method that requires the test-

ing problem to have a special structure in order to eliminate nuisance pa-

rameters. A classical example is the pivotal method introduced by W. S.

Gossett. Assume we have n ≥ 2 observations Xi from a Gaussian distribu-

tion with mean µ and standard deviation σ, both unknown, and suppose

we wish to test H0 : µ = µ0 versus H1 : µ 6= µ0, for a given value µ0.

The obvious test statistic here is the average X̄ of all observations, but it

can’t be used because its distribution depends on the unknown parameter
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σ. However, Gosset discovered that the quantity

T ≡ X̄ − µ0

S/
√

n
, where S ≡

√

√

√

√

1

n − 1

n
∑

i=1

(Xi − X̄)2, (12)

is a pivot, i.e. a function of both data and parameters whose distribution

under H0 is itself independent of unknown parameters:

T ∼ Γ(n/2)
√

(n − 1)π Γ((n − 1)/2)

(

1 +
t2

n − 1

)−n/2

. (13)

Thus, if we evaluate T for our observed data, we can use the above distri-

bution to calculate a p value and perform the desired test.

Another interesting example is the conditioning method: suppose that

we have some data X and that there exists a statistic C = C(X) such that

the distribution of X given C is independent of the nuisance parameter(s).

Then we can use that conditional distribution to calculate p values. A simple

illustration of this idea involves observing a number of events N from a

Poisson distribution with mean µ + ν, where µ represents a signal rate

of interest, whereas ν is a nuisance parameter representing the rate of a

background process. Without further knowledge about ν it is not possible

to extract information from N about µ and hence to test the null hypothesis

that µ = 0. Suppose however that we perform a subsidiary experiment in

which we observe M events from a Poisson distribution with mean τν,

where τ is a known calibration constant. We have then:

N ∼ Poisson(µ + ν) and M ∼ Poisson(τν). (14)

It turns out that this problem has the required structure for applying the

conditioning method, if we use as conditioning statistic C ≡ N+M . Indeed,

the probability of observing N = n given C = n +m is binomial under H0:

P(N = n |C = n + m) =
P(N = n&C = n + m)

P(C = n + m)

=
P(N = n&M = m)

P(C = n + m)
=

[νne−ν/n!] [(τν)me−τν/m!]

(ν + τν)n+me−ν−τν/(n + m)!

=

(

n + m

n

)(

1

1 + τ

)n(

1 − 1

1 + τ

)m

. (15)

The dependence on ν has disappeared in the final expression for this prob-

ability, allowing one to compute a conditional p value:

pcond =
n+m
∑

i=n

(

n + m

i

)(

1

1 + τ

)i (

1 − 1

1 + τ

)n+m−i

. (16)



March 31, 2009 17:45 WSPC - Proceedings Trim Size: 9in x 6in statistics

15

Since m/τ is the maximum likelihood estimate of ν from the subsidiary

measurement, this p value is based on defining as more extreme those obser-

vations that have a larger N value and simultaneously a lower background

estimate than the actual experiment. This method is sometimes used to

evaluate the significance of a bump on top of a background spectrum,

where “sidebands” provide a subsidiary measurement of the background

level in the signal window. Fluctuations in both the signal window and the

sidebands are Poisson.

In Fig. 1 we study the uniformity of the conditional p value (16) under

H0, for several values of τ and the true background magnitude νtrue. In

Fig. 1. Solid lines: cumulative probability distribution of conditional p values under the

null hypothesis, P(p ≤ α |H0) as a function of α. The dotted lines indicate a uniform

distribution, P(p ≤ α |H0) = α. Note the log-log scale.

all cases the p value turns out to be conservative, and the conservativeness

increases as τ decreases, i.e. as the uncertainty on the background esti-

mate increases. Note that if the problem only involved continuous statistics
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instead of the discrete N and M , the conditional p value would be exact.

3.3.2. Supremum Methods

Structural methods have limited applicability due to their requirement that

the testing problem have some kind of structure. A much more general

technique consists in maximizing the p value with respect to the nuisance

parameter(s):

psup = sup
ν

p(ν). (17)

This is a form of worst-case analysis: one reports the largest p value, or the

smallest significance, over the whole parameter space. By construction psup

is guaranteed to be conservative, but may yield the trivial result psup = 1 if

one is not careful in the choice of test statistic. In general the likelihood ratio

is a good choice. For an example, we consider again the Poisson problem

from the previous section, but this time with a Gaussian distribution with

mean ν and standard deviation ∆ν for the subsidiary measurement:

N ∼ Poisson(µ + ν) and X ∼ Gauss(ν,∆ν). (18)

The joint likelihood is:

L(ν, µ |n, x) =
(ν + µ)n e−ν−µ

n!

e−
1

2 (
x−ν
∆ν )

2

√
2π ∆ν

, (19)

and the likelihood ratio statistic is (compare eq. (9)):

λ =

sup
ν≥0, µ=0

L(ν, µ |n, x)

sup
ν≥0, µ≥0

L(ν, µ |n, x)
. (20)

Small λ is evidence against H0. It can be shown that for large values of ν,

the quantity −2 ln λ has the following distribution under H0:

P(−2 ln λ = 0) =
1

2
,

P(−2 ln λ > x) =
1

2

∫ ∞

x

e−t/2

√
2πx

dx =
1

2

[

1 − erf

(
√

x

2

)]

.

(21)

For small ν however, the distribution of −2 ln λ depends on ν and is a good

candidate for the supremum method. Here the supremum p value can be

rewritten as:

psup = sup
ν≥0

P(λ ≤ λ0 |µ = 0) (22)
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A great simplification occurs when −2 ln λ is stochastically increasing a

with ν, because then psup = p∞ ≡ limν→∞ p(ν) and we can still use (21).

Unfortunately this is not generally true, and is often difficult to check.

When psup 6= p∞, p∞ will tend to be liberal. Figure 2 shows the cumulative

distribution of p∞ under H0, for problem (18) and several values of νtrue and

∆ν. It is seen that the p∞ approximation to psup is generally conservative,

Fig. 2. Cumulative probability distribution, under the null hypothesis, of the asymp-

totic approximation to the supremum p value, for a Poisson event count with Gaussian
measurement of the mean.

except at low ∆ν, where some minor, localized liberalism can be detected.

The supremum method has two important drawbacks. Computation-

ally, it is often difficult to locate the global maximum of the relevant tail

probability over the entire range of the nuisance parameter ν. Secondly, the

aA statistic X with cumulative distribution F (x | θ) is stochastically increasing with the
parameter θ if θ1 > θ2 implies F (x | θ1) ≤ F (x | θ2) for all x and F (x | θ1) < F (x | θ2) for
some x. In other words, X tends to be larger for larger values of θ.
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very data one is analyzing often contain information about the true value

of ν, so that it makes little sense to maximize over all values of ν. A simple

way around these drawbacks is to maximize over a 1− γ confidence set Cγ

for ν (see section 4.1), and then to correct the p value for the fact that γ is

not zero:

pγ = sup
ν∈Cγ

p(ν) + γ. (23)

This time the supremum is restricted to all values of ν that lie in the

confidence set Cγ . It can be shown that pγ , like psup, is conservative:

P(pγ ≤ α) ≤ α for all α ∈ [0, 1]. (24)

Although there is a lot of flexibility in the choice of γ and Cγ , both should

be chosen before looking at the data.

3.3.3. Bootstrap Methods

The first bootstrap method we consider is the plug-in. It gets rid of un-

known parameters by estimating them, using for example a maximum-

likelihood estimate, and then substituting the estimate in the calculation of

the p value. For example (18) with likelihood function (19), the maximum-

likelihood estimate of ν under H0 is obtained by setting µ = 0 and solving

∂ lnL/∂ν = 0 for ν. This yields:

ν̂(x, n) =
x − ∆ν2

2
+

√

(

x − ∆ν2

2

)2

+ n ∆ν2. (25)

The plug-in p value is then:

pplug(x, n) ≡
+∞
∑

k=n

ν̂(x, n)k e−ν̂(x,n)

k!
. (26)

In principle two criticisms can be leveled at the plug-in method. Firstly,

it makes double use of the data, once to estimate the nuisance parameters

under H0, and then again to calculate a p value. Secondly, it does not take

into account the uncertainty on the parameter estimates. The net effect

is that plug-in p values tend to be too conservative. The adjusted plug-in

method attempts to overcome this.

If we knew the exact cumulative distribution function Fplug of plug-in p

values under H0, then the quantity Fplug(pplug) would be an exact p value

since its distribution is uniform by construction. In general however, Fplug

depends on one or more unknown parameters and can therefore not be used
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in this way. The next best thing we can try is to substitute estimates for

the unknown parameters in Fplug. Accordingly, one defines the adjusted

plug-in p value by:

pplug,adj ≡ Fplug(pplug | θ̂), (27)

where θ̂ is an estimate for the unknown parameters collectively labeled by

θ. This adjustment algorithm is known as a double parametric bootstrap

and can also be implemented in Monte Carlo form.

Some cumulative distributions of the plug-in and adjusted plug-in p

values are plotted in Fig. 3 for example (18). The adjusted plug-in p value

provides a strikingly effective correction for the overconservativeness of the

plug-in p value.

Fig. 3. Cumulative probability distribution of the plug-in (dashed lines) and adjusted

plug-in (solid lines) p values under the null hypothesis for a Poisson event count with
Gaussian measurement of the mean.
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3.3.4. Predictive Methods

So far we have assumed that information about the nuisance parameter

comes from a subsidiary measurement. This allows one to treat the prob-

lem of eliminating nuisance parameters in a purely frequentist way. The

structural, supremum, and confidence interval methods are guaranteed to

be conservative. The asymptotic approximation to the supremum method

and the bootstrap methods do not provide this guarantee but are still fre-

quentist. We now turn to the situation where information about the nui-

sance parameter comes in the form of a Bayesian prior. We discuss two

approaches, known as prior-predictive and posterior-predictive.

The prior-predictive distribution of a test statistic T is the predicted

distribution of T before the measurement:

mprior(t) =

∫

p(t | θ) π(θ) dθ, (28)

where π(θ) is the prior probability density of θ. After having observed

T = t0 we can quantify how surprising this observation is by referring t0 to

mprior, e.g. by calculating the prior-predictive p value:

pprior = Pmprior
(T ≥ t0 |H0) =

∫ ∞

t0

mprior(t) dt

=

∫

π(θ)

[
∫ ∞

t0

p(t | θ) dt

]

dθ, (29)

where the last equality follows from interchanging two integral signs. This

last expression for pprior shows that the prior-predictive p value can be in-

terpreted as the average of the usual p value over the prior for the unknown

parameter.

The posterior-predictive distribution of a test statistic T is the predicted

distribution of T after measuring T = t0:

mpost(t | t0) =

∫

p(t | θ) π(θ | t0) dθ. (30)

The posterior-predictive p value estimates the probability that a future

observation will be at least as extreme as the current observation if the null

hypothesis is true:

ppost = Pmpost
(T ≥ t0 |H0) =

∫ ∞

t0

mpost(t | t0) dt

=

∫

π(θ | t0)
[
∫ ∞

t0

p(t | θ) dt

]

dθ. (31)
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As the last expression on the right shows, the posterior-predictive p value

can also be written as an average, this time over the posterior for the

unknown parameter. Note the double use of the observation t0 in ppost:

first to compute the posterior for θ, and then again in the tail probability

calculation. We encountered the same feature in the definition of the plug-

in p value, and the same effect will be observed here, namely that the

posterior-predictive p value is overly conservative.

What about the uniformity of pprior and ppost? How well calibrated

are these predictive p values? The answer depends on the distribution of

the test statistic T under the null hypothesis. One can argue that this

should be the prior-predictive distribution (28), since this distribution is

fully specified and is available before observing the data. It is clear that,

by construction, pprior will be uniform with respect to the prior-predictive

distribution. On the other hand, because of its double-use of the data, ppost

will be conservative.

Frequentists will argue that the prior-predictive distribution is not fre-

quentist and therefore does not provide a valid reference ensemble to check

the uniformity of pprior and ppost. If the testing problem of interest is purely

frequentist, a different approach is in fact possible. Consider for example the

Poisson+Gauss problem of eq. (18). One way to apply a predictive method

to this problem is to construct a posterior for the subsidiary Gaussian mea-

surement of ν, and then use this posterior as a prior for ν when calculating

a predictive p value for the Poisson event count N . We still need a prior for

the subsidiary measurement however, and in the absence of further infor-

mation about ν, it is appropriate to use an objective rule such as Jeffreys’.

For a Gaussian likelihood with unknown mean, the Jeffreys’ prior (5) is a

constant. Thus the subsidiary posterior is:

πsub.(ν |x) =
e−

1

2 (
ν−x
∆ν )

2

√
2π ∆ν 1

2

[

1 + erf
(

x√
2 ∆ν

)] , (32)

where the normalization comes from the requirement that ν, being a Poisson

mean, is a positive parameter. We can use this posterior as a prior to

construct pprior and ppost. Furthermore, for every value of ν we now have

a frequentist reference ensemble to check the uniformity of these p values,

namely the set of all (X,N) pairs where X is a Gaussian variate with mean

ν and standard deviation ∆ν, and N is an independent Poisson variate

with mean ν. Contrast this with the reference ensemble represented by the

prior-predictive distribution, which is defined for every value of x rather

than every value of ν, and is the set of (ν,N) pairs where ν is a Gaussian
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variate with mean x and standard deviation ∆ν, and N is a dependent

Poisson variate whose mean is the ν value in the same pair. Because of the

random nature of the parameter ν in this ensemble, it is clearly Bayesian.

Figure 4 shows the cumulative distributions of pprior and ppost with respect

to the frequentist ensemble, for several values of ∆ν. Both p values appear

to be (mostly) conservative, and ppost much more so than pprior, especially

at large ∆ν.

Fig. 4. Cumulative distributions of the prior-predictive (solid lines) and posterior-

predictive (dashed lines) p values for a Poisson event count with a Gaussian uncertainty

on the mean. The dotted lines correspond to exact p values.

We end this discussion of predictive p values with some general com-

ments:
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• Prior-predictive p values cannot be defined for improper priors; in this

case, posterior-predictive p values often provide a solution.

• Posterior-predictive p values can be calculated for discrepancy variables

(i.e. functions of data and parameters) in addition to test statistics.

• Rather than simply reporting a predictive p value, it may be more

informative to plot the observed value of the test statistic against the

appropriate predictive distribution.

• There are other types of predictive p values, which avoid some of the

problems of the prior- and posterior-predictive p values.21

3.3.5. Summary of p Value Methods

To guide our summary of the various nuisance parameter elimination meth-

ods just described, we return to the desiderata listed at the beginning of

section 3.3.

Figures 1 to 4 indicate quite a variation in uniformity, or rather lack

thereof, of p value distributions under the null hypothesis. For the exam-

ples studied, the adjusted plug-in and supremum methods perform quite

well, but this behavior depends strongly on the choice of test statistic.

The likelihood ratio is generally a good choice. Our examples also show

that uniformity tends to be violated on the conservative side, but this is

only guaranteed for fully frequentist methods such as conditioning, supre-

mum, and confidence interval. For other methods uniformity will have to

be checked explicitly for the problem at hand. This is of course important

if one wants to avoid overestimating the significance of a result.

An interesting point to note is that some p values tend to converge in the

asymptotic limit. This is numerically illustrated for example (18) in Table 1,

which shows that the supremum, adjusted plug-in, and prior-predictive p

values give almost identical results on a data sample of thousands of events.

Whenever possible, it is always instructive to compare the results of differ-

ent methods.

Figure 5 compares the power functions of the supremum, adjusted plug-

in, and prior-predictive p values for problem (18). There is not much dif-

ference between the curves, except perhaps at high ∆ν, where the prior-

predictive p value seems somewhat less powerful. Note that as the signal

strength goes to zero, the power function converges to α if the p value is

exact.

Finally, we comment on the monotonicity property: for the examples

and methods studied here, it is true that the p value increases with the

magnitude of the systematic uncertainty. In other words, significance claims
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Table 1. P values for a Poisson observation of n0 = 3893 events

over an estimated background of x0 = 3234 ± ∆ν events, where

∆ν = 10 or 100. For the confidence interval p value a 6σ upper limit

was constructed for the nuisance parameter (γ = 9.87 × 10−10).

Method ∆ν = 10 ∆ν = 100

P value Nσ P value Nσ

Supremum 1.16 × 10−28 11.05 9.81 × 10−9 5.62

Confidence Interval 9.87 × 10−10 6.00 1.23 × 10−8 5.58

Plug-In 8.92 × 10−28 10.86 1.86 × 10−3 2.90

Adjusted Plug-In 1.13 × 10−28 11.05 9.90 × 10−9 5.61

Prior-Predictive 1.23 × 10−28 11.04 9.85 × 10−9 5.61

Posterior-Predictive 5.27 × 10−27 10.70 1.35 × 10−2 2.21

Fig. 5. Power functions of the supremum (solid), adjusted plug-in (dashed), and prior-

predictive (dotted) p values for testing for the presence of a Poisson signal on top of

a Poisson background whose mean νtrue has a Gaussian uncertainty ∆ν. The power is
calculated for a test level of α = 0.05 and is plotted as a function of true signal strength.

are degraded by the presence of systematics. However, in practical problems

not covered by this review, monotonicity will have to be checked explicitly.
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3.4. Caveats about the Likelihood Ratio Statistic

As mentioned previously, the likelihood ratio λ defined in (9) is often a

good choice of test statistic, because it is intuitively sensible, and is even

optimal in the special case of simple vs. simple testing. Although this opti-

mality does not transfer to the testing of composite hypotheses,22 λ remains

popular in that case due to Wilks’ theorem, which gives the asymptotic dis-

tribution of −2 ln λ under the null hypothesis as that of a chisquared (see

section 3.1). Unfortunately, the conditions for this theorem to be applicable

do not always hold in high energy physics problems. What follows are some

examples where these regularity conditions are violated.

• One of the regularity conditions is that the tested hypotheses must

be nested, i.e. H0 must be obtainable by imposing parameter restric-

tions on the model that describes H1. A counter-example is a test that

compares two new-physics models that belong to separate families of

distributions.

• Another regularity condition is that H0 should not be on the boundary

of the model that describes H1. A typical violation of this condition is

when θ is a positive signal magnitude and one is testing H0 : θ = 0

versus H1 : θ > 0.

• A third condition is that there must not be any nuisance parameters

that are defined under H1 but not under H0. Suppose for example that

we are searching for a signal peak on top of a smooth background.

The location, width, and amplitude of the peak are unknown. In this

case the location and width of the peak are undefined under H0, i.e.

when the amplitude is zero. Hence −2 ln λ will not have a chisquared

distribution under H0.

There does exist some analytical work on the distribution of the like-

lihood ratio when the above regularity conditions are violated; however,

these results are not always easy to apply and still require some numerical

calculations. Physicists aware of the limitations of Wilks’ theorem usually

prefer to estimate the distribution of −2 ln λ with the help of a Monte

Carlo calculation. The advantage of this approach is that it allows one to

incorporate all the relevant details of the experimental data analysis; the

disadvantage is that it sometimes requires enormous amounts of CPU time.
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3.5. Expected Significances

Probably the most useful way to describe the sensitivity of a model of new

physics, given specific instrumental conditions, is to calculate the integrated

luminosity for which there is a 50% probability of claiming discovery at the

5σ level. The calculation can be done as follows:

(1) Compute (or simulate) the distribution of p values under the new

physics model and assuming a fixed integrated luminosity.

(2) Find the median of the p value distribution from (1).

(3) Repeat steps (1) and (2) for several values of the integrated luminosity

and interpolate to find the integrated luminosity at which the median

p value is 2.7 × 10−7 (5σ).

To determine the most sensitive method, or the most sensitive test

statistic for discovering new physics, another useful measure is the expected

significance level (ESL), defined as the observed p value averaged over the

new physics hypothesis. If the test statistic X has density fi(x) under Hi,

and if p = 1 − F0(X) ≡ 1 −
∫X

−∞ f0(t) dt, then:

ESL ≡ E(p |H1) =

∫

[1 − F0(x)] f1(x) dx =

∫

F1(x) f0(x) dx. (33)

The integral on the right is easy to estimate by Monte Carlo, since it repre-

sents the probability that X ≥ Y , where X and Y are independent random

variables distributed according to F0 and F1, respectively.

3.6. Combining Significances

When searching for new physics in several different channels, or via different

experiments, it is sometimes desired to summarize the search by calculating

a combined significance. This is a difficult problem. The best approach is

to combine the likelihood functions for all the channels and derive a p value

from the combined likelihood ratio statistic. However, it may not always be

possible or practical to do such a calculation. In this case, if the individual

p values are independent, another possibility is to combine the p values

directly.23 Unfortunately there is no unique way of doing this. The general

idea is to choose a rule S(p1, p2, p3, . . .) for combining individual p values

p1, p2, p3,. . . , and then to construct a combined p value by calculating the

tail probability corresponding to the observed value of S. Some plausible

combination rules are:

(1) The product of p1, p2, p3,. . . (Fisher’s rule);
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(2) The smallest of p1, p2, p3,. . . (Tippett’s rule);

(3) The average of p1, p2, p3,. . . ;

(4) The largest of p1, p2, p3,. . . .

This list is by no means exhaustive. To narrow down the options, there are

some properties of the combined p value that one might consider desirable.

For example:

(1) If there is strong evidence against the null hypothesis in at least one

channel, then the combined p value should reflect that, by being small.

(2) If none of the individual p values shows any evidence against the null

hypothesis, then the combined p value should not provide such evidence.

(3) Combining p values should be associative: the combinations

((p1, p2), p3), ((p1, p3), p2), (p1, (p2, p3)), (p1, p2, p3), should all give the

same result.

Now, it turns out that property 1 eliminates rules 3 and 4; property 2 is

satisfied by all four rules, and property 3, called evidential consistency, is

satisfied by none. This leaves Tippett’s and Fisher’s rules as reasonable

candidates. Actually, it appears that Fisher’s rule has somewhat more uni-

form sensitivity to alternative hypotheses of interest in most problems. So

Fisher’s rule is quite popular.

Here is a simple mathematical trick to combine n p-values by Fisher’s

rule: take twice the negative logarithm of their product and treat it as

a chisquared variate for 2n degrees of freedom (this is valid because the

cumulative distribution of a chisquared variate for 2 d.o.f. is 1− e−x/2, and

chisquared variates are additive). The general result is that

pcomb ≡ Π

n−1
∑

j=0

(− ln Π)j

j!
, where Π ≡

n
∏

j=1

pj , (34)

will have a uniform distribution under H0 if the individual pi are uniform.

One situation in which the pi will not be uniform is if they are derived from

discrete test statistics. In this case the formula will give a combined p value

that is larger than the correct one, and therefore conservative.

The literature on combining p values is extensive; see Ref. 24 for an

annotated bibliography.

3.7. Bayesian Hypothesis Testing

The Bayesian approach to hypothesis testing is to calculate posterior prob-

abilities for all hypotheses in play. When testing H0 versus H1, Bayes’
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theorem yields:

π(H0 |x) =
p(x |H0)π0

p(x |H0)π0 + p(x |H1) π1
, (35)

π(H1 |x) = 1 − π(H0 |x), (36)

where πi is the prior probability of Hi, i = 0, 1. If π(H0 |x) < π(H1 |x),

one rejects H0 and the posterior probability of error is π(H0 |x). Otherwise

H0 is accepted and the posterior error probability is π(H1 |x).

In contrast with frequentist Type-I and Type-II errors, which are known

before looking at the data, Bayesian error probabilities are fully conditioned

on the observations. They do depend on the prior hypothesis probabilities

however, and it is often interesting to look at the evidence against H0

provided by the data alone. This can be done by computing the ratio of

posterior odds to prior odds and is known as the Bayes factor:

B01(x) =
π(H0 |x)/π(H1 |x)

π0/π1
(37)

In the absence of unknown parameters, B01(x) is a likelihood ratio.

Often the distributions of X under H0 and H1 will depend on unknown

parameters θ, so that posterior hypothesis probabilities and Bayes factors

will involve marginalization integrals over θ:

π(H0 |x) =

∫

p(x | θ,H0)π(θ |H0)π0 dθ
∫

[

p(x | θ,H0)π(θ |H0)π0 + p(x | θ,H1)π(θ |H1)π1

]

dθ

(38)

and: B01(x) =

∫

p(x | θ,H0)π(θ |H0) dθ
∫

p(x | θ,H1)π(θ |H1) dθ

(39)

Suppose now that we are testing H0 : θ = θ0 versus H1 : θ > θ0. Then:

B01(x) =
p(x | θ0)

∫

p(x | θ,H1)π(θ |H1) dθ

≥ p(x | θ0)

p(x | θ̂1)
= λ, (40)

where θ̂1 maximizes p(x | θ,H1). Thus, the ratio between the Bayes factor

and the corresponding likelihood ratio is larger than 1. It is sometimes called

the Ockham’s razor penalty factor: it penalizes the evidence against H0 for

the introduction of an additional degree of freedom under H1, namely θ.25



March 31, 2009 17:45 WSPC - Proceedings Trim Size: 9in x 6in statistics

29

The smaller B01, or equivalently, the larger B10 ≡ 1/B01, the stronger

the evidence against H0. A rough descriptive statement of standards of ev-

idence provided by Bayes factors against a hypothesis is given in Table 2.26

There is at present not much experience with Bayes factors in high energy

physics.

Table 2. Verbal description of standards of evidence pro-
vided by Bayes factors.

2 ln B10 B10 Evidence against H0

0 to 2 1 to 3 Not worth more than a bare mention

2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

For a hypothesis of the form H0 : θ = θ0 versus H1 : θ 6= θ0, a Bayesian

test can be based directly on the posterior distribution of θ. First calculate

an interval for θ, containing an integrated posterior probability β. Then,

if θ0 is outside that interval, reject H0 at the α = 1 − β credibility level.

An exact significance level can be obtained by finding the smallest α for

which H0 is rejected. There is a lot of freedom in the choice of posterior

interval. A natural possibility is to construct a highest posterior density

(HPD) interval. If the lack of parametrization invariance of HPD intervals

is a problem, there are other choices (see section 4.4).

If the null hypothesis is H0 : θ ≤ θ0, a valid approach is to calculate

a lower limit θL on θ and exclude H0 if θ0 < θL. In this case the exact

significance level is the posterior probability of θ ≤ θ0.

4. Interval Estimation

Suppose that we make an observation X = xobs from a distribution f(x |µ),

where µ is a parameter of interest, and that we wish to make a statement

about the location of the true value of µ, based on our observation xobs.

One possibility is to calculate a point estimate µ̂ of µ, for example via the

maximum-likelihood method:

µ̂ = arg max
µ

f(xobs |µ). (41)

Although such a point estimate has its uses, it comes with no measure of

how confident we can be that the true value of µ equals µ̂.



March 31, 2009 17:45 WSPC - Proceedings Trim Size: 9in x 6in statistics

30

Bayesianism and Frequentism both address this problem by construct-

ing an interval of µ values believed to contain the true value with some

confidence. However, the interval construction method and the meaning of

the associated confidence level are very different in the two paradigms.

On the one hand, frequentists construct an interval [µ1, µ2] whose

boundaries µ1 and µ2 are random variables that depend on X in such

a way that if the measurement is repeated many times, a fraction γ of

the produced intervals will cover the true µ; the fraction γ is called the

confidence level or coverage of the interval construction.

On the other hand, Bayesians construct the posterior probability den-

sity of µ and choose two values µ1 and µ2 such that the integrated poste-

rior probability between them equals a desired level γ, called credibility or

Bayesian confidence level of the interval.

4.1. Frequentist Intervals: the Neyman Construction

The Neyman construction is the most general method available for con-

structing interval estimates that have a guaranteed frequentist interpreta-

tion. The principal steps of the construction are illustrated in Fig. 6 for the

simplest case of a one-dimensional continuous observation X whose prob-

ability distribution depends on an unknown one-dimensional continuous

parameter µ. The procedure can be described as follows:

Step 1: Make a graph of the parameter µ versus the data X, and plot the

density distribution of X for several values of µ (plot a);

Step 2: For each value of µ, select an interval of X values that has a fixed

integrated probability, for example 68% (plot b);

Step 3: Connect the interval boundaries across µ values (plot c);

Step 4: Drop the “scaffolding”, keeping only the two lines drawn at step 3;

these form a confidence belt that can be used to construct an interval

[µ1, µ2] for the true value of µ every time you make an observation xobs

of X (plot d).

To see why this procedure works, refer to Fig. 7. Suppose that µ? is the true

value of µ. Then P(x1 ≤ X ≤ x2 |µ?) = 68% by construction. Furthermore,

for every X ∈ [x1, x2], the reported µ interval will contain µ? and for every

X 6∈ [x1, x2], the reported µ interval will not contain µ?. Therefore, the

probability of covering µ? is exactly 68%, and this holds regardless of the

value of µ?. For problems with discrete statistics (such as Poisson event

counts), the construction yields intervals that are conservative, i.e. which

cover above the nominal level for some parameter values.
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Fig. 6. Four steps in the Neyman construction of confidence intervals (see text).

There are four basic ingredients in the Neyman construction: an estima-

tor µ̂ of the parameter of interest µ, an ordering rule, a reference ensemble,

and a confidence level. We now take a look at each of these individually.

4.1.1. Ingredient 1: the Estimator

The estimator is the quantity plotted along the abscissae in the Neyman

construction plot. Suppose for example that we collect n independent mea-

surements xi of the mean µ of a Gaussian distribution with known standard

deviation. Then clearly we should use the average x̄ of the xi as an esti-



March 31, 2009 17:45 WSPC - Proceedings Trim Size: 9in x 6in statistics

32

Fig. 7. Why the Neyman construction works (see text).

mate of µ, since x̄ is a sufficient statistic b for µ. On the other hand, if µ is

constrained to be positive, then it would make sense to use either µ̂ = x̄ or

µ̂ = max{0, x̄}. These two estimators lead to intervals with very different

properties. We will come back to this example in section 4.5.

4.1.2. Ingredient 2: the Ordering Rule

The ordering rule is the rule we use to decide which X values to include

in the interval at step 2 of the construction. The only constraint on that

interval is that it must contain 68% of the X distribution (or whatever

confidence level is desired for the overall construction). For example, we

could start with the X value that has the largest probability density and

then keep adding values with lower and lower probability density until we

bA statistic T (X) is sufficient for µ if the conditional distribution of the sample X given
the value of T (X) does not depend on µ. In a sense, T (X) captures all the information
about µ contained in the sample.
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cover 68% of the distribution. Another possibility is to start with X = −∞
and add increasing values of X, again until we reach 68%. Of course, in

order to obtain a smooth confidence belt at the end, we should choose the

ordering rule consistently from one µ value to the next. In this sense it is

better to formulate the ordering rule in terms of µ rather than X. This

emphasizes the inferential meaning of the resulting intervals: an ordering

rule is a rule that orders parameter values according to their perceived

compatibility with the observed data. Here are some examples, all assuming

that we have observed data x and are interested in a 68% confidence interval

[µ1, µ2] for a parameter µ whose maximum likelihood estimate is µ̂(x):

• Central ordering

[µ1, µ2] is the set of µ values for which the observed data falls between

the 16th and 84th percentiles of its distribution.

• Probability density ordering

[µ1, µ2] is the set of µ values for which the observed data falls within

the 68% most probable region of its distribution.

• Likelihood ratio ordering

[µ1, µ2] is the set of µ values for which the observed data falls within a

68% probability region R, such that any point x inside R has a larger

likelihood ratio L(µ |x)/L(µ̂(x) |x) than any point outside R.

• Upper limit ordering

] −∞, µ2] is the set of µ values for which the observed data is at least

as large as the 32nd percentile of its distribution.

• Minimal expected length

This rule minimizes the average interval length (µ2(X) − µ1(X)) over

the sample space.

4.1.3. Ingredient 3: the Reference Ensemble

This refers to the replications of a measurement that are used to calcu-

late coverage. In order to specify these replications, one must decide which

random and non-random aspects of the measurement are relevant to the

inference of interest. When measuring the mass of a short-lived particle for

example, it may be that its decay mode affects the measurement resolu-

tion. Should we then refer our measurement to an ensemble that includes

all possible decay modes, or only the decay mode actually observed?

For simplicity assume that the estimator X of the mass µ is normal with

mean µ and standard deviation σ, and that there is a p = 50% probability

that the particle will decay hadronically, in which case σ ≡ σh = 10; other-
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wise the particle decays leptonically and σ ≡ σ` = 1. As interval ordering

rule we’ll use minimal expected length. Since the decay mode is observable,

one can proceed in two ways:

• Unconditional minimization;

The reference ensemble includes all decay modes. We report x ± δh

if the decay is hadronic and x ± δ` if it is leptonic, where δh and δ`

are constants that minimize the expected interval length, 2[pδh + (1 −
p)δ`], subject to the constraint of 68% coverage over the whole reference

ensemble. Substituting the given numbers, this yields δh = 5.06, δ` =

2.20, and an expected length of 7.26.

• Conditional minimization;

The reference ensemble includes only the observed decay mode. We

report x ± σh in the hadronic case and x ± σ` in the leptonic one; the

expected interval length is 2[pσh + (1 − p)σ`] = 11.0.

The expected interval length is quite a bit larger for the conditional method

than for the unconditional one. If one were to repeat the measurement a

large number of times, one would find that in the conditional analysis the

coverage of the interval is 68% both within the subensemble of hadronic de-

cays and within the subensemble of leptonic decays. On the other hand, in

the unconditional analysis the coverage is 39% for hadronic decays and 97%

for leptonic decays, correctly averaging to 68% over all decays combined.

Qualitatively, by shifting some coverage probability from the hadronic de-

cays to the higher precision leptonic ones, the unconditional construction

is able to reduce the average interval length.

The above problem is an adaptation to high-energy physics of a famous

example in the statistics literature,27,28 used to discuss the merits of con-

ditioning versus power (or interval length).

4.1.4. Ingredient 4: the Confidence Level

The confidence level labels a family of intervals; some conventional values

are 68%, 90%, and 95%. It is very important to remember that a confidence

level does not characterize single intervals; it only characterizes families of

intervals. The following example illustrates this.

Suppose we are interested in the mean µ of a Gaussian population with

unit variance. We have two observations, x and y, so that the maximum

likelihood estimate of µ is µ̂ = (x+y)/2. Consider the following two intervals
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for µ:

I1 : µ̂ ± 1/
√

2 and I2 : µ̂ ±
√

max{ 0, 4.60 − (x − y)2/4}

Both I1 and I2 are centered on the maximum likelihood estimate of µ.

Interval I1 uses likelihood ratio ordering, is never empty, and has 68%

coverage. Interval I2 uses probability density ordering, is empty whenever

|x − y| ≥ 4.29, and has 99% coverage. Suppose next that we observe x =

10.00 and y = 14.05. It is easy to verify that the corresponding I1 and I2

intervals are numerically identical and equal to 12.03±0.71. Thus, the same

numerical interval can have two very different coverages (confidence levels),

depending on which ensemble it is considered to belong to.

4.2. Handling of Nuisance Parameters in the Neyman

Construction

In principle the Neyman construction can be performed when there is more

than one parameter; it simply becomes a multidimensional construction,

and the confidence belt becomes a “hyperbelt”. If some parameters are

nuisances, they can be eliminated by projecting the final confidence region

onto the parameter(s) of interest at the end of the construction. This is a

difficult problem: the ordering rule has to be designed so as to minimize

the amount of overcoverage introduced by projecting.

There are simpler solutions. A popular one is to eliminate the nuisance

parameters ν from the data probability density function (pdf) first, by

integrating them over proper prior distributions:

f(x |µ, ν) → f̃(x |µ) ≡
∫

f(x |µ, ν)π(ν) dν (42)

This is a Bayesian step: the data pdf it yields depends only on the parame-

ter(s) of interest and can then be used in a standard Neyman construction.

Another possibility is to eliminate the nuisance parameters by profiling

the pdf. This is particularly useful if one has an independent measurement

y of ν, with pdf g(y | ν):

f(x |µ, ν) → f̆(x |µ) ∝ max
ν

{

f(x |µ, ν) g(y | ν)
}

(43)

The profiled pdf is then used in a Neyman construction.

Note that the coverage of the simpler solutions is not guaranteed! How-

ever, if necessary it is sometimes possible to “recalibrate” these methods in

such a way that coverage is achieved. Recall the Neyman construction of a
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γ-level confidence interval:

Cγ(xobs) =
{

µ : xobs ∈ Sγ(µ)
}

, (44)

where Sγ(µ) is a subset of sample space that satisfies:

Pµ,ν

[

X ∈ Sγ(µ)
]

≥ γ for all µ and ν, (45)

or equivalently:

min
ν

Pµ,ν

[

X ∈ Sγ(µ)
]

≥ γ for all µ. (46)

In the recalibrated profile likelihood method, one sets:

Sγ(µ) =
{

x : λµ(x) ≡ L(µ, ν̂µ(x) |x)

L(µ̂(x), ν̂(x) |x)
≥ cγ(µ)

}

, (47)

where ν̂µ(x) maximizes L(µ, ν |x) for given µ and x, and (µ̂(x), ν̂(x)) max-

imizes L(µ, ν |x) for given x. For each µ one adjusts cγ(µ) to satisfy (46).

4.3. Other Frequentist Interval Construction Methods

In practice, a popular method for constructing intervals is via test inversion.

Suppose we are interested in some parameter θ ∈ Θ, and that for each

allowed value θ0 of θ we can construct an exact p value to test H0 : θ = θ0.

We then have a family {pθ} of p values indexed by the θ value of the

corresponding test, and we can use this family to construct one- and two-

sided γ confidence-level intervals for θ:

C1γ =
{

θ : pθ ≥ 1 − γ
}

and C2γ =
{

θ :
1 − γ

2
≤ pθ ≤ 1 + γ

2

}

.

(48)

To describe the one-sided construction for example, one would say that a

γ confidence limit for θ is obtained by collecting all the θ values that are

not rejected at the 1 − γ significance level by the p value test. Indeed:

P[θtrue ∈ C1γ ] = P[pθtrue
≥ 1 − γ] = 1 − P[pθtrue

< 1 − γ]

= 1 − (1 − γ) = γ, (49)

where the first equality follows from the definition of C1γ and the third one

from the uniformity of p values under the tested hypothesis.

In general one can expect the properties of a family of p values to be

reflected in the properties of the resulting family of intervals. A conservative

p value will lead to conservative intervals, and a powerful p value will result

in short intervals.
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Another popular interval construction method is based on the likeli-

hood function.29 In one dimension, an approximate 68% confidence inter-

val can be obtained by collecting all the parameter values for which the

log-likelihood is within half a unit from its maximum. The validity of this

approximation tends to increase with sample size.

Finally, another method explored by statisticians is based on objec-

tive Bayesian ideas. Objective priors can be designed in such a way that

the resulting posterior intervals have a frequentist coverage that matches

their Bayesian credibility to some order in 1/
√

n, n being the sample size.

When there are no nuisance parameters and the parameter of interest is

one-dimensional, the matching prior to O(1/n) for one-sided intervals is

Jeffreys’ prior (5). Results are harder to come by in higher dimensions, but

it is believed that reference analysis offers the best hope.13 A major advan-

tage of this approach is that it automatically yields intervals with Bayesian

credibility, meaning intervals that are relevant for the actually observed

data.

4.4. Bayesian Interval Constructions

As emphasized in section 2.2, the output of a Bayesian analysis is always the

complete posterior distribution for the parameter(s) of interest. However,

it is often useful to summarize the posterior by quoting a region with a

given probability content. Such a region can be an interval or a union of

intervals. Several schemes are available:

• Highest probability density regions;

Any parameter value inside such a region has a higher posterior proba-

bility density than any parameter value outside the region, guaranteeing

that the region will have the smallest possible length (or volume). Un-

fortunately this construction is not invariant under reparametrizations,

and there are examples where this lack of invariance results in zero

coverage for a subset of parameter values (of course this would only be

of concern to a frequentist or an objective Bayesian).

• Central intervals;

These are intervals that are symmetric around the median of the pos-

terior distribution. For example, a 68% central interval extends from

the 16th to the 84th percentiles. Central intervals are parametrization

invariant, but they can only be defined for one-dimensional parameters.

Furthermore, if a parameter is constrained to be non-negative, a central

interval will usually not include the value zero; this may be problematic
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if zero is a value of special physical significance.

• Upper and lower limits;

For one-dimensional posterior distributions, these one-sided intervals

can be defined using percentiles.

• Likelihood regions;

These are standard likelihood regions where the likelihood ratio be-

tween the region boundary and the likelihood maximum is adjusted to

obtain the desired posterior credibility. Such regions are metric indepen-

dent and robust with respect to the choice of prior. In one-dimensional

problems with physical boundaries and unimodal likelihoods, this con-

struction yields intervals that smoothly transition from one-sided to

two-sided.

• Intrinsic credible regions;

These are regions of parameter values with minimum reference posterior

expected loss30 (a concept from Bayesian reference analysis).

High energy physicists using Bayesian procedures are generally advised to

check the sensitivity of their result to the choice of prior, and its behavior

under repeated sampling (coverage).

4.5. Examples of Interval Constructions

The effect of a physical boundary on frequentist and Bayesian interval con-

structions is illustrated in Figures 8 and 9 for the measurement of the mean

µ of a Gaussian with unit standard deviation. The mean µ is assumed to be

positive. All intervals are based on a single observation x. In general inter-

vals have many properties that are worth studying: here we only examine

the Bayesian credibility of frequentist constructions and the frequentist cov-

erage of Bayesian constructions.

Figure 8 shows only frequentist constructions; Feldman-Cousins inter-

vals31 use x as estimator of µ and are based on a likelihood ratio ordering

rule, whereas Mandelkern-Schultz intervals32 use max{0, x} as estimator of

µ and are based on a central ordering rule. The central, Feldman-Cousins,

and upper limit confidence sets have very low credibility when the observa-

tion X is a large negative number. Mandelkern-Schultz intervals avoid this

problem by reporting the same result for any negative X as for zero X,

resulting in excess credibility at negative X.

Figure 9 shows central, highest posterior density, intrinsic, and upper

limit Bayesian constructions, using Jeffreys’ rule as prior for µ. They gen-

erally have good frequentist coverage, except near µ = 0, where the curves
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for central and intrinsic intervals dip to zero.

Note how frequentist coverage and Bayesian credibility always agree

with each other when one is far enough from the physical boundary.

5. Search Procedures

Search procedures combine techniques from hypothesis testing and interval

construction. The basic idea is to test a hypothesis about a new physics

model, and then characterize the result of the test by computing point and

interval estimates. We discuss both the frequentist and Bayesian approaches

to this problem.

5.1. Frequentist Search Procedures

The standard frequentist procedure to search for new physics processes is

as follows:

(1) Calculate a p value to test the null hypothesis that the data were gen-

erated by standard model processes alone.

(2) If p ≤ α1 claim discovery and calculate a two-sided, α2 confidence level

interval on the production cross section of the new process.

(3) If p > α1 calculate an α3 confidence level upper limit on the production

cross section of the new process.

Typical confidence levels are α1 = 2.9 × 10−7, α2 = 0.68, and α3 = 0.95.

There are a couple of issues regarding this procedure. The first one

is coverage: since the procedure involves one p value and two confidence

intervals, an immediate question concerns the proper frequentist reference

ensemble for each of these objects. The second issue arises when one fails

to claim a discovery and calculates an upper limit. The stated purpose of

this limit is to exclude cross sections that the experiment is sensitive to and

did not detect. How then does one avoid excluding cross sections that the

experiment is not sensitive to? We take a closer look at these two issues in

the following subsections.

5.1.1. The Coverage Issue

In a 1998 paper on frequentist interval constructions,31 Feldman and

Cousins characterize as flip-flopping the procedure by which some exper-

imenters decide whether to report an upper limit or a two-sided interval

on a physics parameter that is constrained to be non-negative (such as a
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Fig. 8. Frequentist interval constructions. Left: graphs of µ versus X. Right: Bayesian

credibility levels based on Jeffreys’ prior; dashed lines indicate the frequentist coverage.
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Fig. 9. Bayesian interval constructions. Left: graphs of µ versus X. Right: frequentist

coverage levels; dashed lines indicate the Bayesian credibility.
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mass or a mean event rate). In flip-flopping, this decision is based on first

inspecting the data; an upper limit is then reported if the data is less than

3σ away from the physical boundary, and a two-sided interval otherwise.

Because the initial data inspection is not taken into account in construct-

ing the intervals, the flip-flopping procedure undercovers and is therefore

invalid from a frequentist point of view.

In the frequentist search procedure just described, the decision to cal-

culate a two-sided interval or an upper limit is based on the significance of

the observed data with respect to the null hypothesis, a clear case of flip-

flopping. One way to solve this problem would be to construct a Feldman-

Cousins interval, since the latter transitions automatically from a one-sided

to a two-sided interval as the data exhibits increasing evidence against the

null hypothesis (see Fig. 8, top right). Unfortunately the Feldman-Cousins

construction requires α1 = α2 = α3; this is unsatisfactory because it leads

either to intervals that are too wide or test levels that are too low.

Another possibility is to construct conditional frequentist intervals: If

p ≤ α1, calculate a two-sided α2 confidence level interval conditional on

the observation that p ≤ α1; otherwise, calculate an α3 confidence level

upper limit conditional on the observation that p > α1. What this means

practically, in terms of the Neyman construction of each interval, is that the

estimator X along the horizontal axis must be constrained to live within

the region of sample space selected by the test, i.e. p ≤ α1 or p > α1. The

distribution of X must be appropriately truncated and renormalized in each

case. An example of such a construction is shown in Fig. 10, for a simple

search that involves testing whether the mean µ of a Gaussian distribution

is zero (the null hypothesis) or greater than zero (the alternative). The data

consists of a single sample X from that Gaussian, and can be negative or

positive. The Gaussian width is assumed known. The plot shows that the

conditional upper limit diverges as the discovery threshold is approached

from the left, indicating that, so close to discovery, it becomes impossible

to exclude any non-zero value of µ. On the other hand, as the threshold

is approached from the right, the conditional two-sided interval turns into

an upper limit, indicating that, so close to failing to make a discovery, it is

possible that the true value of µ is zero and that the observed effect is just a

background fluctuation. Note that a likelihood-ratio ordering rule was used

here, in order to avoid creating a region of X values for which the reported

µ interval is empty. For a central ordering rule for example, a small such

region appears just above the discovery threshold.

In general physicists using the frequentist search procedure don’t bother
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Fig. 10. Neyman construction of conditional intervals (solid lines) for the positive mean
µ of a Gaussian, after having tested at the 5σ level whether µ = 0. On the left of the

discovery threshold, a 95% confidence level upper limit is shown, and on the right a 68%
confidence level interval. Dashed lines indicate the corresponding unconditional intervals.

with the conditional construction. It is a more complicated calculation, and

in any case its results coincide with those of the unconditional construction

if one is far enough from the rejection threshold. Presumably one could

argue that eventually, as more data are collected, one will be far enough.

So far our discussion of frequentist search procedures is based on a strict

error-rate interpretation of measurement results. An alternative approach,

not widely known in HEP, is to adopt an evidential interpretation.33 This

approach is centered around the p value, and the reported intervals serve

to quantify the actual severity with which the hypothesis test has probed

deviations from the null hypothesis. Suppose for example that we are testing

H0 : µ = µ0 versus H1 : µ > µ0. If the p value against H0 is not small, this

is regarded as evidence that the true value of µ must be less than µ0 + δ for

some δ. Thus one may examine the probability β(δ) of observing a worse

fit of the data if the true value of µ is µ0 + δ. If that probability is near

one, the data are good evidence that µ < µ0 + δ. What physicists do in

practice is to solve β(δ) = α3 for δ, and report that all values of µ above

µ0 + δ are excluded at the 1− α3 confidence level. A similar reasoning can
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be followed to justify the reporting of a two-sided interval for µ when the

p value against H0 is small.

5.1.2. The Sensitivity Issue

Suppose the result of a test of H0 is that it can’t be rejected: we find p0 >

α1, where the subscript 0 on the p value emphasizes that it is calculated

under the null hypothesis. A natural question is then: what values of the

new physics cross section µ can we actually exclude? This is answered by

calculating an α3 C.L. upper limit on that cross section, and the easiest

way to do this is by inverting a p value test: exclude all µ values for which

p1(µ) ≤ 1−α3, where p1(µ) is the p value under the alternative hypothesis

that µ is the true value.

If our measurement has little or no sensitivity for a particular value of

µ, this means that the distribution of the test statistic is (almost) the same

under H0 and H1. In this case p0 ∼ 1 − p1, and under H0 we have:

P0(p1 ≤ 1 − α3) ∼ P0(1 − p0 ≤ 1 − α3) = P0(p0 ≥ α3)

= 1 − P0(p0 < α3) = 1 − α3. (50)

For example, if we calculate a 95% C.L. upper limit, there will be a ∼ 5%

probability that we will be able to exclude µ values for which we have no

sensitivity. Some experimentalists consider that 5% is too much; to avoid

this problem they only exclude µ values for which

p1(µ)

1 − p0
≤ 1 − α3. (51)

For historical reasons, the ratio of p values on the left-hand side is known

as CLs. The resulting upper limit procedure overcovers.

It is often useful to examine plots of p1 versus p0 for a given experimental

resolution.34 If Fi(x) is the cumulative distribution function of the test

statistic X under Hi, then we have p1 = F1(x) and p0 = 1−F0(x) (assuming

that large values of X are evidence against H0). Hence, p1 = F1[F
−1
0 (1 −

p0)]. This is illustrated in Fig. 11 for the simple case where Fi(x) is Gaussian

with mean µi and known width σ. The horizontal dashed line in the plot is

the standard frequentist exclusion threshold: any µ value for which p1(µ)

is below that line will be excluded at the α3 confidence level. In the lower

right-hand corner of the plot, one sees that even for experiments with no

resolution (∆µ/σ = 0) p1 can dip below the horizontal line, leading to the

rejection of some values of µ. This is avoided by the CLs procedure (51),

represented by the slanted line of dots. Interestingly, Bayesian upper limits
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Fig. 11. Plot of p1 versus p0 in a test of H0 : µ = µ0 versus H1 : µ = µ1, where µ is
the mean of a Gaussian of known width σ. The experimental resolution is ∆µ/σ, with

∆µ = |µ1 − µ0|.

coincide with CLs limits for this problem. As the measurement resolution

∆µ/σ increases, the corresponding p1 versus p0 contour approaches the

lower left-hand corner of the plot, with the result that the probability of

rejecting a false H0 increases, and conversely, the probability of excluding

a given µ value if H0 is true also increases.

This last observation provides an interesting way to quantify a priori

the sensitivity of a search procedure when the new physics model depends

on a parameter µ, namely by reporting the set S of µ values for which

1 − β(α1, µ) ≥ α3, (52)

where β(α1, µ) is the frequentist Type-II error rate corresponding to a dis-

covery threshold α1 and a value µ for the parameter under the alternative

hypothesis. The set S has a couple of valuable interpretations:35

(1) If the true value of µ belongs to S, the probability of making a discovery

is at least α3, by definition of β.

(2) If the test does not result in discovery, it will be possible to exclude

at least the entire sensitivity set with confidence α3. Indeed, if we fail
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to reject H0 at the α1 level, then we can reject any µ in H1 at the

β(α1, µ) level, so that p1(µ) ≤ β(α1, µ); furthermore, if µ ∈ S, then

β(α1, µ) ≤ 1 − α3 and therefore p1(µ) ≤ 1 − α3, meaning that µ is

excluded with confidence α3.

In general the sensitivity set depends on the event selection and the choice of

test statistic. Maximizing the size of the sensitivity set provides a criterion

for optimizing the event selection and choice of test statistic. The appeal

of this criterion is that it optimizes the result regardless of the outcome of

the test.

5.2. Bayesian Search Procedures

The starting point of a Bayesian search is the calculation of a Bayes factor.

For a test of the form H0 : θ = θ0 versus H1 : θ > θ0, this can be written

as:

B01(x) =
p(x | θ0)

∫

p(x | θ,H1)π(θ |H1) dθ

, (53)

and points to an immediate problem: what is an appropriate prior π(θ |H1)

for θ under the alternative hypothesis? Ideally one would be able to elicit

some kind of proper “consensus” prior representing scientific knowledge

prior to the experiment. If this is not possible, one might want to use an

“off the rack” objective prior, but such priors are typically improper, and

therefore only defined up to a multiplicative constant, rendering the Bayes

factor totally useless.

A possible objective solution is to use the so-called intrinsic or expected

posterior prior construction:25

• Let πO(θ) be a good estimation objective prior (for example a reference

prior), and πO(θ |x) the corresponding posterior.

• Then the intrinsic prior is

πI(θ) ≡
∫

πO(θ | y) p(y | θ0) dy, (54)

where p(y | θ0) is the pdf of the data under H0. The dimension of y (the

sample size) should be the smallest one for which the posterior πO(θ | y)

is well defined.

The idea is that if we were given separate data y, we would compute the

posterior πO(θ | y) and use it as a proper prior for the test. Since we are
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not given such data, we simply compute an average prior over all possible

data.

In addition to the Bayes factor we need prior probabilities for the

hypotheses themselves. An “objective” choice is the impartial π(H0) =

π(H1) = 1/2. The posterior probability of H0 is then

π(H0 |x) =
B01

1 + B01
, (55)

and the complete outcome of the search is this probability π(H0 |x), plus

the posterior distribution of θ under the alternative hypothesis, π(θ |x,H1).

Often it will be useful to summarize the posterior distribution of θ under

H1 by calculating an upper limit or a two-sided interval.

6. Systematic Uncertainties

Although we have mentioned systematic uncertainties in our treatment of

nuisance parameters in section 3.3, they deserve some additional remarks

in a separate section. To begin, systematic uncertainties should be distin-

guished from statistical uncertainties, which are due to random fluctuations

resulting from the finite size of the data sample. Systematic uncertainties

are associated with the measuring apparatus, assumptions made by the

experimenter, and the model used to draw inferences. Whereas statistical

uncertainties from different samples are independent, this is not usually the

case with systematics, which tend to be correlated across samples.

One can distinguish three types of systematic uncertainties:36

(1) Systematics that can be constrained by ancillary measurements and can

therefore be treated as statistical uncertainties. As example, consider

the measurement of the mass of the top quark in a tt̄ channel where at

least one top quark decays hadronically, i.e. t → Wb → j1j2b, where j1
and j2 are light-quark jets; since these come from the decay of the W ,

the known W mass can be used to constrain the jet energy scale.

(2) Systematics that cannot be constrained by existing data and are due to

poorly understood features of the model used to draw inferences. Here,

examples include background composition and shape, gluon radiation,

higher-order corrections, and fragmentation parameters.

(3) Sources of uncertainty not easily modeled in a standard probabilistic

setup, such as unknown experimenter bias.

In general a measurement result f is affected by several systematic un-

certainties simultaneously. Assuming that these are all Type-2 systematics
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and that we adopt a Bayesian framework, we can find a prior π(µ, ν, . . .)

for the corresponding nuisance parameters. The variance of f due to these

uncertainties is then:

V [f ] =

∫

[

f(µ, ν, . . .) − f(µ0, ν0, . . .)
]2

π(µ, ν, . . .) dµ dν . . . , (56)

where µ0, ν0, . . . , are the nominal values of the nuisance parameters. In

HEP however, we usually quantify the effect of these systematics on f by

summing independent variations in quadrature:

S2 =
[

f(µ0 + σµ, ν0, . . .) − f(µ0, ν0, . . .)
]2

+
[

f(µ0, ν0 + σν , . . .) − f(µ0, ν0, . . .)
]2

+ . . . (57)

This procedure is called OFAT, for “One Factor At a Time”, and only

takes into account linear terms in the dependence of f on the nuisance

parameters. This may be a mistake, as there often are quadratic (µ2, ν2,

. . . ), mixed (µν), and even higher order terms that should be included in

the calculation of the variance of f .

Techniques exist to estimate these higher-order effects by order of im-

portance — this is called DOE, for “Design Of Experiments”. The idea is

to vary several systematics simultaneously instead of just one by one. DOE

techniques are not much used in current experimental high energy physics.

However, it is believed that these are valuable ideas that should be kept in

mind as the complexity of data analyses continues to increase.37,38
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