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Abstract

Several standard statistical tests can be used to quantify the significance of a
deviation in the tail of a measured distribution. We study the bias introduced in
these tests due to binning of the data, variation of the range over which the data
are tested, and systematic uncertainties. Monte Carlo methods to compute correct
significance levels are described. The results are applied to a comparison of the Run
1A inclusive jet cross section do/dEr with NLO QCD calculations.

1 Introduction

Recently a number of techniques have been proposed to quantify the significance of the
discrepancy at high E7 between the measured inclusive jet cross section and the theoretical
prediction [1, 2]. A simple x*-test is not sensitive to the fact that the high-E; bins all
deviate wn the same direction from the prediction. On the other hand, there exist empirical
distribution function tests, such as the Kolmogorov-Smirnov and the Smirnov-Cramér-
von Mises tests, which do have this kind of sensitivity. Like the x? test, their application
involves the measurement of some deviation statistic S between data and theory, and
the subsequent calculation of a significance level describing the probability to observe a
deviation at least as large as S under the hypothesis that data and theory have the same
parent distribution. This calculation can be done with the help of standard subroutines
or tables which were originally derived under several assumptions:

1. the tests are performed on unbinned data;

2. the range of the tested distribution is not adjusted to optimize the resulting signif-
icance level;



3. there are no systematic uncertainties;

4. the theoretical model does not depend on parameters which are extracted from the
data.

The relevance of the first three assumptions is to some degree overlooked in reference [2].
It is the purpose of this note to study the effect of this oversight and to propose a method
to compute correct significance levels. The fourth assumption has already been discussed
by Hovhannes Keutelian [3] for the Kolmogorov-Smirnov test, and will not be considered
any further.

In section 2 we review the definitions of the Kolmogorov-Smirnov and Smirnov-Cramér-
von Mises statistics for both one-sample and two-sample tests. We also describe the
Anderson-Darling test [4, 5], which is designed to be more powerful than the first two
for detecting deviations in the tail of a distribution. All three of these tests are intended
to be applied to unbinned data. We investigate the effect of binning in section 3, and
describe a method to compute correct significance levels. This method is then applied to
the inclusive jet spectrum in section 4. In section 5, we study what happens to significance
levels when the range of a data distribution is varied until the maximal deviation from
a given model is obtained. This technique was actually employed in the inclusive jet
analysis [2], but we show that, when properly applied, it offers no additional power over
the standard testing method. A method to incorporate systematic uncertainties in the
computation of significance levels is described and illustrated in section 6. Our conclusions
are listed in section 7.

2 Definition of some Goodness-of-Fit Statistics

The goodness-of-fit statistics we are interested in are meant to be applied to the compar-
ison of integral distributions, as opposed to the x? statistic for example, which is applied
to the comparison of distribution densities. Given a set of data points {z;, i = 1,..., N},
sorted in ascending order, its empirical distribution function is defined as follows:

0 Hz <z
Sv(z)=< /N ifz; <z<2iy, 1=1,...,N—1 (1)
1 ifz>zy

2.1 Omne-Sample Statistics

In order to compare Sy(z) to a theoretical distribution F(z), we introduce three statistics:
the Kolmogorov-Smirnov statistic Dyay:

Dos ® VN sup  |Su(z)— F(a)] (2)

—oo << oo
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where yl = F( ;), the Smirnov-Cramér-von Mises statistic W?:

w? oy /OI(SN(J:)—F(J:))Z dF () (4)
N 2i—1\2 1
N ;(y"_ oN ) 12N’ (5)

and the Anderson-Darling statistic A%:

4 N/ (S ””()1 _FF(ZZ;) dF (z) (6)

fj [(2’_ L ) In(1 —g) — (2’]; 1) ln(yi)] _N. (7)

Equalities (5) and (7) were obtained by substituting Sy(z) from (1) into (4) and (6)
respectively, and integrating separately over each interval over which Sy() is constant.
The statistic A? is identical to W? except for a factor [F(2) (1 — F(z))]”" in the integrand,
whose purpose is to give more weight to the tails of the tested distribution. Thus one
expects the Anderson-Darling statistic to be more powerful at detecting deviations in the
tails.

2.2 Two-Sample Statistics

It is sometimes the case that one does not know explicitly the parent distribution function
F(z) of the model with which the data are to be compared. For example, the model could
be a set of events obtained from a Monte Carlo simulation. One must then compare two
empirical distribution functions, say Sy(z) and Sy/(z). Let us assume that Sy(z) is
defined according to equation (1) from N data events {z;, = 1,..., N}, and that Sy (z)
is similarly defined from M Monte Carlo events {y;,, : = 1,...,M}. The two-sample
Kolmogorov-Smirnov statistic is:

b [ NM

TS Sn(2) — Sue) 8)

The normalization factor in front of the supremum symbol ensures that this D,,,, statistic
is asymptotically distributed in the same way as the one-sample statistic defined by equa-
tion (2)'. This way, both statistics should yield asymptotically identical tail probabilities.

!The Smirnov theorem guarantees that in the limit M, N — oo, with M/N constant, the two-sample
and one-sample D, statistics are identically distributed.



The two-sample W? and A? statistics, to be defined below, will be similarly normalized.
For this note, we will not attempt to distinguish notationally between one-sample and
two-sample statistics. What is intended should be clear from the context.

In order to find the two-sample statistics corresponding to W?# and A?, we need to find
substitutes for the weight functions dF(z) and dF(z)/ [F(z)(1 — F(z))] in the integrals
of the defining equations (4) and (6), since F(z) is not known. The obvious choice is
to replace F(z) by S(z), the empirical distribution function formed from both samples
combined. Indeed, under the null-hypothesis that the z; and y; were drawn from the same
parent population, S(z) is our best estimate for F/(z). The two-sample Smirnov-Cramér-
von Mises statistic is defined by [6]:

s df NM ! 2
L s T (Sn(z) — Sm(z))” dS(=) (9)
NM [ 2 | = 2
T (N+M)2 [;(SN(%) — Su(:)) +;(5N(yi) — Su(yi)) l (10)

and the two-sample Anderson-Darling statistic by:

o at NM 1 (Sn(z) = Su(=)) o0
S ary T S(z) (1— ()) d5(z) (11)

NM S Z; 2 M S i) — S 5 2
_ R ISCACEE T CXARE T A
(N + M) S(z:) (1= 5(z:) = Sy (1= 5(y))
In this last expression, one of the sums has a term with a denominator equal to zero,

since S(z) = 1 for # = max{z,,y;}. This term has a numerator equal to the square of
zero however, and is therefore left out of the sum.

For computational purposes it is convenient to sort the z; and y; in ascending order.
Then, if 7 is the rank of z; in the {;} sample, 7 the rank of y; in the {y;} sample, and
R(z) the rank of z in the combined {z;,y;} sample, we have:

Sx(a) =+ Sw(uy) = L= (13)
Su(w:) = (]& : SM(yj)Z% (14)
S(ed) = g S(u) = (15)

2.3 Tail Probabilities

Provided the four conditions listed in the introduction are satisfied, statistical tests based
on Dy, W% and A? are distribution-free: under the null-hypothesis, the distributions of
these statistics do not depend on the form of the tested distribution F(z). This can be
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directly seen from their definitions, since the maximum difference between S(z) and F(z)
over the whole range of z, or the integral of this difference, is not affected by a one-to-one
change in the variable z.

Once the statistics Dpya.c, W? and A% have been calculated, there are several ways
to convert them into significance levels. We will consider two methods. The first one
consists in computing the value of an analytically derived asymptotic approximation to
the survivor function. The second method is to perform a Monte Carlo calculation.

Since the purpose of this note is to study how significance levels are affected by various
modifications of the testing conditions, it will be useful to have analytical expressions for
the survivor functions in order to be able to plot them as reference curves. The survivor
function of the Kolmogorov-Smirnov statistic is given by:

Sks(A) & Prob (Duax > A) = —2 Z b exp(—2k% A?) (16)
N—oo
where the notation N — oo indicates that the formula is valid in the limit of large sample
size N. In practice this means N > 80 for the Kolmogorov-Smirnov statistic. For N < 80,
tables must be consulted [7]. Sks(A) is available in the CERN library as routine PROBKL
(package code G102).

The survivor function of the Smirnov-Cramér-von Mises statistic is [4]:

Sscvm(A) &€ Prob (W? > 1) (17)

N—oo

= I(k+ 1) (4k 4+ 1)? (4k + 1)?
= 1-— m/X Z \/_k' Vak + 1 exp(— 167/\) Ki_(mi)\)(m)

where K1 is the modified Bessel function of order 1/4. The function Sscvm(A) is not
avallable in the CERN library, but K1 is (routine BSIR4, package code C327). As the

above series converges very rapidly, it is straightforward to translate it into computer

code.

For the Anderson-Darling statistic, we have:

Sap(A) & Prob (A% > ) (19)
VB B DTG @k
= 1- Y kg_% X exp(— T) I(X) (20)
where:
def [ A/8 Yy’
LA) = /0 exP(4Ay2/((4k+ 1272 + 1 ?) dy (21)

Although SAp(A) is not available in the CERN library, it too is relatively easy to imple-
ment as a subroutine: its series converges rapidly, and the integral I can be performed
numerically, using, for example, an open Romberg quadrature algorithm [8].
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The advantage of implementing survivor functions in a computer program is that it
allows one to calculate tail probabilities outside the range of available tables. However,
there are many situations where the asymptotic approximation underlying these formulae
is not valid, for example when the sample size is small, or when the data are binned
(see section 3), or when the model depends on parameters which are extracted from the
data. In all these cases, the simplest way to compute tail probabilities is via Monte Carlo
algorithms. We illustrate this idea with a procedure to calculate the tail probability of a
one-sample statistic:

Monte Carlo procedure 1

(1) Generate N random numbers z; according to the theoretical distribution F(z), and
use them to form an “empirical” distribution function Sn(z).

(2) Calculate the one-sample deviation statistic Dpax, W? or A? between F(z) and Sy(z).

(8) Repeat (1) and (2) a large number of times, and calculate the fraction of times that
the deviation statistic is larger than the measured one. This is the desired significance
level of the measurement.

Monte Carlo procedures sometimes have a disadvantage, in that large numbers of samples
need to be generated in order to quantify highly significant deviations. This can become
very time-consuming. It may be possible to shorten these computations however, using
techniques such as importance sampling.

Figure 1 shows that calculations based on survivor functions or Monte Carlo algorithms
yield identical results in their common domain of applicability. For these plots we ran
100,000 Monte Carlo experiments, for each of which we generated 1,000 random data z;
distributed according to the density:

dF 125
Plots (a), (b) and (c) compare the result of Monte Carlo procedure 1 (data points) with the
survivor functions (solid lines) for the one-sample Kolmogorov-Smirnov, Smirnov-Cramér-
von Mises, and Anderson-Darling statistics respectively. The agreement is excellent, as

expected.

For two-sample tests, the form of the distribution F(z) is not necessarily known, and
therefore step (1) in the above Monte Carlo procedure needs to be modified. As in
section 2.2, let us assume that we are to compare a sample of N events with a sample
of M events. The idea is to use the combined sample of N + M events as a “bootstrap”
estimator of F(z):

Monte Carlo procedure 2

(1) Draw N events with replacement from the combined sample of N + M initial events,
and form their empirical distribution function Sy(z).
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(2) Draw M events with replacement from the combined sample of N + M initial events,
and form their empirical distribution function Sy(z).

(3) Calculate the two-sample deviation statistic Dp.x, W? or A? between Sy(z) and
Su(z).

(4) Repeat (1), (2) and (3) a large number of times, and calculate the fraction of times
that the deviation statistic is larger than the measured one. This 1s the desired significance
level of the measurement.

Figure 2 checks the equivalence between the above procedure (data points) and the sur-
vivor functions (solid lines), for two-sample statistics. The distributions of the two-sample
Dinax, W? and A? are plotted for 100,000 trials. For plots (a), (b) and (c), the two initial
samples contained 1,000 events each, drawn according to the density (22). There is good
agreement for the case of W? and A?, but a slight shift between the two D, distri-
butions. As expected (since the advertised equivalence is only asymptotic), this shift is
reduced by increasing the size of the initial samples from 1,000 to 4,000 events each (plot
d).

3 Effect of Binning the Data Sample

In the case of a complex measurement such as that of the inclusive jet cross section
do/dEr, one needs to unfold detector effects from the measured data, or fold in those
effects in the theoretical distribution, before a meaningful comparison between data and
theory can be attempted. The folding or unfolding procedure requires that the data be
binned, and the goodness-of-fit tests described in the previous section must be modified
in order to be applicable to binned data. Let us assume that the N data points z; are
histogrammed into B bins with contents d;, j = 1,..., B. The empirical distribution is
now given by:

1

S, = — dj, k=1,...,B (23)
N 3 ’
B

N o= Y4, (24)
7=1

and is to be compared with:

1 k

F, = 7 ot;, k=1,...,B (25)

7=1

B

T = Xt (26)
7=1

tj = F(uj)—F()) (27)



where uy (I) is the upper (lower) boundary of bin k, and F(z) is the theoretical distri-
bution function.

3.1 Omne-Sample Statistics for Binned Data

It is straightforward to translate the definitions (2), (4) and (6) in terms of Sy and Fj:

Dyaxyy = VN  ax |Sk — Fk| (28)
W(b) = N Z (S; — Fy) TJ (29)
Jj=1
B-1 2
9. — F) t.
A2 — N (S; i) Y
) 2—; F;(1-F) T (30)
‘]_

where the subscript (b) refers to the fact that we have binned the data before calculating
these statistics. Note that the sums only need to go up to B — 1 since by definition
Sp=Fp=1.

3.2 Two-Sample Statistics for Binned Data

Let {z;, :=1,...,N} and {y;, 1 = 1,..., M} be two data samples, both histogrammed
into B bins with contents d; and d} respectively (j = 1,..., B). Define the corresponding
empirical distribution functions S and S according to equation (23). Set d] = d; + d’,
D" = E;‘il d7, and let S} be the empirical distribution function for the d7. The deviation
statistics are then given by:

NM
Dmax(b) N + M kirllalXB |Sk - S]’{:| (3]‘)
NM & 2 df
‘]:
NM B (5._5/_)2 d"
A%b) = Z //J : " _J// (33)
N+M = S/(1-S)D

3.3 Tail Probabilities for Binned Data

In order to be able to convert the statistics Dmax(b), W(Zb) and A%b) into significance levels,
we need to calculate their distributions under the null-hypothesis. It can no longer be
assumed that these distributions are given by the survivor functions of section 2.3, except
in the limit of very fine binning. The correct distributions are most easily estimated with
the Monte Carlo method, which we illustrate here for the case of one-sample statistics:
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Monte Carlo procedure 3

(1) Generate N random numbers z; according to the theoretical distribution F(z) (N is
the number of events in the data sample).

(2) Histogram the z; and form the empirical distribution function Sj.
(8) Calculate the deviation statistic Diax(b), W(Zb) or A%b) between Fj, and Sj.

(4) Repeat (1) through (8) a large number of times, and calculate the fraction of times
that the deviation statistic is larger than the measured one. This 1s the desired significance
level of the measurement.

We have applied this procedure by generating 100,000 Monte Carlo samples of N = 1000
events each, distributed according to equation (22). First we histogrammed each Monte
Carlo sample in 10 bins from 100 to 500. The resulting distributions of Dyayw), W(Zb), and
A%b) are plotted as data points in Figure 3. The solid lines in these figures were calculated
from the survivor functions for unbinned statistics. There is a large difference between
the two calculations. For the case of the Kolmogorov-Smirnov test, binning the tested
distributions tends to reduce the separation between them. Therefore, the significance
of a deviation calculated from binned distributions will actually be higher than what the
survivor functions of section 2.3 predict. The same is true for small deviations in the
Smirnov-Cramér-von Mises and Anderson-Darling tests. For higher values of W? and A?
however, the data points cross over the solid curves, and deviations become actually less
significant than what could be expected according to the standard survivor functions.

We also tried a finer binning, 500 bins from 100 to 500, and plotted the result in
Figure 4. As expected, the disagreement between binned and unbinned is much less pro-
nounced in this case. In conclusion, care is needed when using the standard Kolmogorov-
Smirnov, Smirnov-Cramér-von Mises, or Anderson-Darling distributions to test coarsely
binned data. In some sense, this can be contrasted with the x? test, which requires many
events per bin in order to be reliable.

Monte Carlo procedure 3 is rather impractical in the case of the inclusive jet analysis.
The inclusive jet spectrum contains hundreds of thousands of events, and the generation
of such a large number of random numbers for each Monte Carlo sample would require
far too much processing time. In addition, it would be quite difficult to efficiently gener-
ate random numbers distributed according to the inclusive jet spectrum, because of the
complexity of the analytical expression which describes this spectrum. Fortunately there
is a trivially simple way to overcome these difficulties:

Monte Carlo procedure 4

(1) For each bin t; of the theoretical distribution, generate a Poisson fluctuation t; with
mean Nt;/T, where N is the number of data events and T =Y, t;. Call Sy the empirical
distribution formed from the t,.



(2) Calculate the deviation statistic Drax(v), W(Zb) or A%b) between Sy and the theoretical
distribution Fy.

(8) Repeat (1) and (2) a large number of times, and calculate the fraction of times that
the deviation statistic is larger than the measured one. This is the desired significance
level of the measurement.

This procedure replaces the difficult generation of N random numbers according to F(z)
by the much easier generation of B Poisson random numbers. The equivalence of proce-
dures 3 and 4 is illustrated in Figure 5, for the example described above.

4 Application to the Inclusive Jet Analysis

We are now ready to look at the effect of binning on the distributions of D4, ), W(Zb) and
A%b) for the inclusive jet cross section. The theoretical prediction, smeared for detector
effects, and the measured data points are listed in table 1 [9]. As the smearing procedure
introduces statistical uncertainties in the theoretical distribution, two-sample statistics
must be used to test consistency between data and theory.

Figure 6 shows the distribution densities of several deviation statistics, as obtained by
applying Monte Carlo procedure 4 (slightly modified to handle two-sample statistics) to
the theoretical prediction for the inclusive jet cross section. The densities obtained by
differentiating the standard survivor functions are also shown for comparison. As more
bins are included in the calculation of a statistic, the distribution of that statistic becomes
more like that of the corresponding asymptotic survivor function.

A quantitative comparison between data and theory is provided in table 2. The signif-
icance levels are expressed as numbers of standard deviations for a Gaussian distribution,
which are somewhat easier to comprehend than probabilities, especially when the latter
are very small. The correspondence between probabilities P and numbers of standard
deviations r is given by:

P % Prob(|X|>7) = - dt (34)

2 r
— e
V2or /—oo
where X is a normal variate. The table also provides the results of a standard y? test

of goodness of fit. For two histograms with bin contents {d;, # = 1,...,B} and {d}, i =
1,..., B}, summing up to D and D’ respectively, the variable:

2 d i (d:/D'/D — d\/D/D) (35)

d + d

=1

is approximately distributed as a x? variable with B — 1 degrees of freedom.
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Table 1: Inclusive jet event rate, smeared NLO QCD theory and raw data, as a function

of jet Er.

11

Bin | Jet E7 | Number of events Bin | Jet E7 | Number of events
(GeV) | Theory | Data (GeV) | Theory | Data
1 14.6 1841 1691 22 | 133.8 8738 8709
2 20.4 423 367 23 | 139.2 6759 6782
3 26.9 110969 | 99263 24 | 144.5 5227 5127
4 33.3 43435 41677 25 | 149.9 4071 4018
5 39.5 19176 19139 26 | 155.3 3156 3212
6 45.5 9677 9505 27 | 160.6 2472 2520
7 51.3 5165 5182 28 | 168.4 3534 3575
8 57.0 2933 2844 29 | 179.2 2245 2242
9 62.7 1757 1746 30 | 189.9 1457 1498
10 68.3 1088 1105 31 | 200.7 972 1044
11 73.9 689 662 32 | 211.5 638 695
12 79.5 456 420 33 | 224.7 586 683
13 85.0 6350 6165 34 | 241.0 327 344
14 90.5 4405 4362 35 | 2574 186 201
15 95.9 3076 2979 36 | 273.8 107 129
16 | 101.4 2216 2224 37 | 292.5 77 98
17 | 106.8 6276 6203 38 | 314.4 38 52
18 | 112.2 4584 4499 39 | 336.2 19 24
19 | 117.6 3379 3409 40 | 365.5 14 21
20 | 123.0 2525 2522 41 | 418.5 4 10
21 128.4 1899 1876




Deviation Bin | Value of | Standard | Corrected Smeared S.L.

Statistic | Range | Statistic S.L. S.L. Ostab = 1% ‘ Ostab = 2.5%

5-41 | 38.2/36 0.90 0.90 0.65 0.53

10-41 | 35.9/31 1.15 1.15 0.95 0.79

15-41 | 30.9/26 1.19 1.19 1.00 0.87

x?/Naor | 20-41 | 26.8/21 1.35 1.36 1.18 1.06

25-41 | 21.5/16 1.41 1.41 1.27 1.17

30-41 | 10.2/11 0.65 0.64 0.60 0.58

35-41 3.65/6 0.35 0.34 0.34 0.33

5-41 1.201 1.59 1.86 1.32 0.90

10-41 1.395 2.05 2.38 1.67 1.27

15-41 1.356 1.96 2.34 1.74 1.40

Daxp) | 20-41 1.324 1.88 2.32 1.88 1.60

2541 1.335 1.91 2.41 2.02 1.82

30-41 0.923 0.91 1.52 1.39 1.31

35-41 0.659 0.28 0.99 0.97 0.96

5-41 0.616 2.32 2.25 1.59 1.08

10-41 1.025 3.07 3.06 1.99 1.48

15-41 0.802 2.69 2.65 1.86 1.48

W(Zb) 20-41 0.770 2.63 2.50 1.96 1.66

2541 0.915 2.89 2.77 2.24 1.99

30-41 0.579 2.24 2.01 1.82 1.71

35-41 0.328 1.59 1.39 1.36 1.34

5-41 4.540 2.82 2.75 1.81 1.25

10-41 6.808 3.54 3.52 2.18 1.61

15-41 5.633 3.19 3.15 2.10 1.65

A%b) 2041 5.239 3.06 2.97 2.20 1.85

2541 5.802 3.24 3.12 2.43 2.13

30-41 3.060 2.23 2.09 1.86 1.73

35-41 1.667 1.47 1.39 1.36 1.33

Table 2: Significance levels obtained from a comparison between inclusive jet data and
theory. Values and significance levels are given for each of four different deviation statistics
and for several Er bin ranges. The bin numbers refer to table 1. Significance levels
are expressed in equivalent numbers of standard deviations for a Gaussian distribution.
Standard significance levels (column 4) were obtained from asymptotic survivor functions,
whereas the corrected significance levels (column 5) were computed according to Monte
Carlo procedure 4 (one million trials). The last two columns incorporate the effect of all
the systematic uncertainties (cfr. section 6). The uncertainty on the Ey scale stability
was taken to be 1% for column 6, and 2.5% for column 7 (see [2]).
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Several points can be made about the results shown in the table. Except for the x?
statistic, there is a clear difference between the significance levels computed from the
standard survivor functions, and those obtained from the correct Monte Carlo procedure
for binned data. The difference is most pronounced in the case of D.p). It is also
evident that A%b) is more powerful at detecting deviations than W(2b), which is itself more
powerful than Dy,.xe). The x* statistic is the weakest of all four. Finally, the deviation
detected by these statistics is indeed in the tail of the jet E; distribution, since the
significance levels do not change much as the first bin in the tested bin range moves from
bin 5 to bin 25. Beyond bin 30, the significances start to decrease because by then the
high-statistics central region of the jet E7 distribution is no longer available to “calibrate”
the comparison of data with theory.

Another way to demonstrate that the observed deviation comes from high-Er jets is
to compare theory and data in the central region of the spectrum, leaving out the tail.
This is done in table 3, where each of the four deviation tests is applied to the E; region
between bins 5 and 25. In all cases, data and theory are within 0.2 standard deviations
of each other.

Deviation | Bin | Value of | Standard | Corrected Smeared S.L.
Statistic | Range | Statistic S.L. S.L. Ostab = 1% ‘ Ostab = 2.5%
x?/Naot | 5-25 7.9/20 0.0093 0.0092 0.0058 0.0050
Doy | 5-25 0.358 0.00058 0.047 0.027 0.024

W(Zb) 5-25 0.052 0.171 0.18 0.11 0.09
A%b) 5-25 0.285 0.064 0.15 0.087 0.076

Table 3: Significance levels obtained from a comparison between data and theory of the
central region (bins 5 through 25) of the inclusive jet E; spectrum. These significance
levels are expressed in numbers of standard deviations for a Gaussian distribution. The
columns in this table have the same meaning as in table 2.

5 Effect of Varying the Range of the Tested Distri-
bution

Since our goal is to quantify a deviation between data and theory in the ta:l of the jet Er
spectrum, it may be tempting to try the following procedure [2]:

1. Test all bin ranges of the form :—41, where ¢ is a bin number between 1 and 40;

2. Select the range which gives the largest deviation statistic (Dmax(b), W(Zb) or A%b));
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3. Convert the value of the deviation statistic into a significance level.

The third step requires some care. We are no longer doing standard Kolmogorov-Smirnov,
Smirnov-Cramér-von Mises or Anderson-Darling tests as described in section 2, since we
are optimizing the bin range, thereby introducing another random variable in addition to
the deviation statistic itself. Let us therefore rename the deviation statistics obtained by
the above procedure Do) W(Zb) nax and A%b) max”
tion of Monte Carlo procedure 4, we can plot distributions of the new statistics. This is
shown in Figure 7, for the case of the inclusive jet analysis. There is a large difference
between these distributions and the distributions of the standard statistics. The results
of testing the deviation between data and theory are listed in table 4. They indicate that
this method is actually less powerful than the simpler tests investigated in the previous
section.

Using a simple and obvious modifica-

Deviation Statistic | Value | Bin range for which | Standard S.L. | Corrected S.L.
value is reached

DR 1.448 28-41 2.17 1.54
WE) 1.236 24-41 3.39 1.99
A2 7.438 24-41 3.71 2.47

Table 4: Significance levels obtained from a comparison between inclusive jet data and the-
ory. The deviation statistics are defined in the text. The significance levels are expressed
in numbers of standard deviations for a Gaussian distribution. Standard significance levels
were computed from the survivor functions for Dy,.,, W? and A?, whereas the corrected
significance levels were obtained from a Monte Carlo procedure.

6 Effect of Systematic Uncertainties

So far we have not incorporated the effect of systematic uncertainties in the evaluation of
significance levels. This is fairly straightforward to do when the x? statistic is used; see
for example [10]. For the case of the Dma., W? and A” statistics, binned or unbinned, a
different procedure must be adopted.

For binned data, the following method has been suggested in [2]. First, one adjusts the
systematics to obtain the best possible agreement between data and theoretical model.
This adjustment is driven by a least-squares algorithm which incorporates the effect of
systematic uncertainties. It allows for some limited variation in shape of the fitted dis-
tribution. Any remaining shape difference between data and theory is then subsequently
picked up by a shape-sensitive test based on D,,,, W? or A%,
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While this method will certainly yield a significance which is diluted by systematic
effects, it is not at all clear that the least-squares algorithm will converge to the same
minimum as an algorithm whose goodness-of-fit criterion is Dp.., W? or A% Therefore,
it is also not clear whether the final significance properly takes into account the full range
of systematic effects.

We propose here a method which avoids the above difficulty by calculating significance
levels from smeared distributions of the deviation statistics. The smearing procedure
samples the whole range of systematics with the appropriate weighting function. Let us
assume we are to compare a data histogram {d;} with a model histogram {m;,}, and that
both model and data are subject to statistical fluctuations:

Monte Carlo procedure 5

(1) For each bin of the model distribution, generate a Poisson fluctuation m; with mean
m;. Call Sy the empirical distribution formed from the m;.

(2) Create a “systematic” fluctuation {m.} of the model histogram. For exzample, if there
1s only one systematic uncertainty, which 1s Gaussian and fully correlated across bins, one
would generate a single normal random number X, and shift each bin m; by the amount
X - 0;, where o; 1s the absolute systematic uncertainty on the contents m;. If there are
several systematic uncertainties, several such shifts will have to be done.

(8) For each bin of the histogram obtained from step (2), generate a Poisson fluctuation
m, with mean m!. Let S, be the empirical distribution function associated with the m/.

(4) Calculate the deviation statistic Diax(b), W(Zb) or A%b) between Sy and S)..

(5) Repeat steps (1), (2), (3) and (4) a large number of times, and calculate the fraction
of times that the deviation statistic is larger than the measured one. This is the desired
significance level of the measurement, smeared with systematic effects.

We have applied this procedure to the inclusive jet data of section 4. The inclusive jet
analysis considers a total of eight systematic uncertainties. Since these uncertainties are
independent and act in the same way on the jet E; spectrum, it is sufficient to consider
a single systematic uncertainty, equal to the bin-by-bin sum in quadrature of the original
eight [1]. We will consider two cases. For the first case, the uncertainty on the stability of
the absolute calibration of the calorimeter, o1, is assumed to be 1%. This is considered
to be a correct assumption [2], and leads to a combined systematic uncertainty varying
from about 13% at low Er to about 28% at high Er. For the second case, the uncertainty
on the stability of the calibration is set to its upper limit of 2.5%. Here, the combined
systematic uncertainty varies from about 17% to 39%. The results of our calculations are
given in the last two columns of tables 2 and 3.

Table 2 shows that the statistic A%b), calculated from bins 10 through 41, gives the
highest significance: 3.52 standard deviations. When using Monte Carlo procedure 5
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with the combined systematic uncertainty, we find smeared significances of 2.18 and 1.61
standard deviations, depending on the assumption about the stability of the calibration
of the calorimeter. Although this result may seem disappointing, it should not come as
a surprise. Figure 8 shows how the value of A%b), calculated from bins 10 through 41,
varies as a function of the amount of systematic uncertainty added to the theoretical
distribution. This amount is measured in numbers of standard deviations of systematic
uncertainty. Horizontal lines in the plot indicate the significance levels corresponding to
various values of A%b). For o4a, = 1% or 2.5%, shifting the theoretical distribution by
about 2.6, respectively 1.1 standard deviations of systematic uncertainty brings it within
less than one standard deviation of the data. This plot illustrates that, with the given
systematic uncertainty, data and theory are not very far from each other, and that the
shape of the systematic uncertainty can easily accomodate the high- E7 excess observed
in the data.

7 Conclusions

We have reviewed the formalism of one-sample and two-sample tests with the Kolmogorov-
Smirnov, Smirnov-Cramér-von Mises, and Anderson-Darling statistics. When the tested
distribution is coarsely binned, as is the case for the inclusive jet E; spectrum, we have
shown that correct significance levels can not be obtained from standard published tables
or subroutines, but can be calculated with Monte Carlo algorithms, of which we gave
several examples. Applying this technique to the inclusive jet E7 spectrum, we found that
the Anderson-Darling test is more powerful than the other two at detecting deviations
in the tail of the spectrum. We then studied the effect of choosing the range of bins
to include in a given test. When the criterion guiding this choice is the maximization
of the discrepancy between two distributions, the corresponding significance levels are
strongly biased, as one should expect. Finally, we proposed a Monte Carlo procedure
to incorporate the effect of systematic uncertainties into the tests, and applied it to the
inclusive jet E; spectrum.
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Figure 1: Distributions of (a) the Kolmogorov-Smirnov statistic, (b) the Smirnov-Cramér-
von Mises statistic, and (c) the Anderson-Darling statistic for one-sample tests on un-
binned data. The data points are histograms obtained by generating 100,000 trials ac-
cording to Monte Carlo procedure 1. The solid lines are the result of numerically differ-
entiating the survivor functions Sks, Sscym and Sap respectively, and are normalized
to the same areas as the corresponding histograms.
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Two—Sample Statistics
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Figure 2: Distributions of the two-sample Kolmogorov-Smirnov statistic (plots a and d),
Smirnov-Cramér-von Mises statistic (b), and Anderson-Darling statistic (c¢) for unbinned
data. The data points are histograms obtained by generating 100,000 trials according to
Monte Carlo procedure 2. For plots (a), (b) and (c), the initial samples contained 1,000
events each, whereas for plot (d) they contained 4,000 events each. The solid lines are
the result of numerically differentiating the survivor functions Sks, Sscvm, Sap and Sks
respectively, and are normalized to the same areas as the corresponding histograms.



One—Sample Statistics
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Figure 3: Distributions of (a) the Kolmogorov-Smirnov statistic, (b) the Smirnov-Cramér-
von Mises statistic, and (c) the Anderson-Darling statistic for one-sample tests on coarsely
binned data (see text). The data points are histograms obtained by generating 100,000
trials according to Monte Carlo procedure 3. The solid lines are the result of numer-
ically differentiating the survivor functions Sks, Sscyvm and Sap respectively, and are
normalized to the same areas as the corresponding histograms.
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One—Sample Statistics
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Figure 4: Distributions of (a) the Kolmogorov-Smirnov statistic, (b) the Smirnov-Cramér-
von Mises statistic, and (c) the Anderson-Darling statistic for one-sample tests on finely
binned data (see text). The data points are histograms obtained by generating 100,000
trials according to Monte Carlo procedure 3. The solid lines are the result of numer-
ically differentiating the survivor functions Sks, Sscyvm and Sap respectively, and are
normalized to the same areas as the corresponding histograms.
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One—Sample Statistics
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Figure 5: Distributions of the one-sample Kolmogorov-Smirnov statistic (a), Smirnov-
Cramér-von Mises statistic (b), and Anderson-Darling statistic (c) for the density repre-
sented by equation (22), histogrammed in 10 bins from 100 to 500. The histograms were
obtained with Monte Carlo procedure 3, the data points with procedure 4.
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Two—Sample Statistics
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Figure 6: Distributions of the two-sample Kolmogorov-Smirnov statistic (a), Smirnov-
Cramér-von Mises statistic (b), and Anderson-Darling statistic (c) for the E7-binned run
1A inclusive jet sample (cfr. table 1). The dashed and dotted histograms were obtained by
using bins 5 through 41, respectively 30 through 41, to calculate the statistics. The solid
lines are the result of numerically differentiating the survivor functions Sks, Sscvm and
SADp respectively, and are normalized to the same areas as the corresponding histograms.
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Two—Sample Statistics
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Figure 7: The dashed histograms are distributions of the two-sample deviation statistics

Diaiw (plot a), W(Zb)max (plot b), and A%b)max (plot c¢) for the Ep-binned run 1A inclu-
sive jet sample. The solid lines are the result of numerically differentiating the survivor
functions Sks, Sscvm and Sap respectively, and are normalized to the same areas as the

corresponding histograms.

24



O

O

i Significance = 4o

,,,,,,,,, N

aa

~l

(o)}

Significance = 3o

A
o

N

(6N

Significance = 20

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

N

Significance = 1o

I N
\

O \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\
- 0 l 2 3 4 5 6 7

Number of Standard Deviations of Systematic Uncertainty

Figure 8: Comparison of inclusive jet data and theory: the two curves show the variation

of the statistic A%, as a function of the number of standard deviations of systematic

uncertainty added to the theoretical distribution. The uncertainty on the stability of

the absolute calibration of the calorimeter was set to 1% (dashed curve) and 2.5% (solid

curve). The dotted horizontal lines show various significance levels associated with given
2

values of A(b).
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