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Generalized frequentism addresses problems that are not exatly solvable using onventional frequentism. Suh prob-

lems inlude the alulation of p-values and on�dene intervals when nuisane parameters are present, or when

interest is foused on a ompliated funtion of the parameters of the model under onsideration. Although gener-

alized frequentist methods are based on exat probability statements, they do not neessarily yield overage in the

onventional sense. However, simulation studies indiate that these methods tend to overover, and often surpass

other available methods in terms of test power or interval length.

1 Introdution

An often hallenging omponent of frequentist al-

ulations is the elimination of nuisane parameters.

There seems to be no method that is generally ap-

pliable and at the same time theoretially guaran-

teed to preserve exat overage in all ases. However,

a ouple of likelihood-based methods are known to

behave reasonably well in many situations. In the

�rst method, alled pro�ling, the likelihood is maxi-

mized with respet to the nuisane parameters. The

seond method, marginalization, integrates the like-

lihood over these parameters. Whihever tehnique

is hosen, its overage properties for the problem at

hand must then be veri�ed a posteriori.

This paper aims to present a third approah,

known as generalized frequentism.
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Its strategy is

to extend the onventional de�nitions of p-values

and on�dene intervals in suh a way that statis-

tial problems involving nuisane parameters an be

solved \exatly", i.e. using exat probability state-

ments. The resulting generalized p-values and on�-

dene intervals tend to behave well with respet to

the usual frequentist de�nitions, hene their interest.

2 Generalized p-Values

Let X be a random variable with density f(x j �; �),

where � is the parameter of interest and � is a nui-

sane parameter. We are interested in testing:

H

0

: � � �

0

versus H

1

: � > �

0

:

The usual way of solving this problem is to �nd a

test statisti T (X), de�ned as a funtion of the data

X whih does not depend on unknown parameters,

whose distribution is free of unknown nuisane pa-

rameters, and whih is stohastially inreasing with

�, i.e. suh that the probability IPr(T (X) � t j �)

inreases with � for all t. One then alulates the

p-value:

p = IPr

�

T (X) � T (x) jH

0

�

;

where x is the observed value of X . A small p-value

indiates that the observed x does not support H

0

.

There are many problems for whih test statis-

tis as de�ned above simply do not exist. In these

ases a solution an be found by extending the def-

inition of test statisti to that of a generalized test

variable, whih is a funtion T (X; x; �; �) of the ran-

dom variable X , its observed value x (treated as a

onstant), and the parameters � and �, suh that the

following requirements are satis�ed:

1. T (x; x; �; �) does not depend on � or �;

2. The distribution of T (X; x; �

0

; �) under H

0

is

free of �;

3. Given x and �, IPr

�

T (X; x; �; �) � t j �

�

is a

monotoni funtion of �.

The generalized p-value based on T (X; x; �; �) is de-

�ned similarly to a onventional p-value:

p = IPr

�

T (X; x; �; �) � T (x; x; �; �) jH

0

�

:

We emphasize that in this probability statement,

only X is onsidered as a random variable, whereas

the observed value x is held onstant. Beause of

the way T (X; x; �; �) is de�ned, this p-value is free

of unknown parameters and allows the desired inter-

pretation that small p orresponds to lak of sup-

port for H

0

. However, although p is based on an

exat probability statement, the overage probabil-

ity IPr(p � �) may depend on nuisane parameters

and needs to be heked expliitly.
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There exists no general method that will system-

atially yield all possible generalized test variables

for a given problem. However, an easy and useful

reipe is available.

3;4

To formulate it we onsider a

slightly more general problem involving k unknown

parameters �

1

; �

2

; : : : ; �

k

, and where the parameter

of interest � is a funtion of the �

i

. We make the

following assumptions:

1. There exists a set of observable statistis,

(X

1

; X

2

; : : : ; X

k

), that is equal in number to the

number of unknown parameters �

i

.

2. There exists a set of invertible pivots

a

,

(V

1

; V

2

; : : : ; V

k

), relating the statistis (X

i

) to

the unknown parameters (�

i

).

The reipe is then as follows:

1. By writing the parameter of interest, �, in terms

of the parameters �

i

, express � in terms of the

statistis X

i

and the pivots V

i

.

2. Replae the X

i

by their observed values x

i

and

subtrat the result from �.

For a simple appliation of this reipe, onsider a

sample fY

1

; Y

2

; : : : ; Y

n

g drawn from Gauss(�; �), a

Gaussian distribution with mean � and width �,

both unknown. We are interested in the ratio � �

�=�. The sample mean and standard deviation are

a set of minimal suÆient statistis for � and �:

X

1

�

1

n

n

X

i=1

Y

i

and X

2

�

v

u

u

t

1

n� 1

n

X

i=1

�

Y

i

�X

1

�

2

:

The random variables

V

1

�

X

1

� �

�=

p

n

and V

2

�

nX

2

2

�

2

relate the statistis (X

1

; X

2

) to (�; �), and have dis-

tributions free of unknown parameters:

V

1

� Gauss(0; 1) and V

2

� �

2

n�1

:

Applying the reipe yields a generalized test variable,

whih an be written in terms of (V

1

; V

2

) or (X

1

; X

2

):

T � � �

p

nx

2

x

1

p

V

2

� x

2

V

1

= � �

�

x

1

X

2

=x

2

+ ��X

1

:

The �rst expression for T shows that its distribution

under H

0

is free of unknown parameters (the ob-

served values x

1

and x

2

being treated as onstants),

whereas the seond expression shows that the ob-

served value of T is zero. The property of stohasti

monotoniity is somewhat harder to verify.

2.1 Appliation to Poisson Signi�ane Tests

For a slightly more omplex appliation we turn to

a ommon problem in high-energy physis. Consider

a Poisson proess onsisting of a bakground with

strength b superimposed on a signal with strength s:

f

N

(n; b+ s) =

(b+ s)

n

n!

e

�b�s

:

The nuisane parameter b is determined from a Gaus-

sian measurement x:

f

X

(x; b) =

e

�

1

2

(

x�b

�b

)

2

p

2��b

:

It is assumed that b � 0 but that, due to resolution

e�ets, x an take both positive and negative val-

ues. We are interested in testing H

0

: s = 0 versus

H

1

: s > 0. This problem has two parameters, b and

s, two statistis, N and X , and two pivots:

V

1

=

X � b

�b

and V

2

= F

N

(N ; b+ s);

where F

N

(N ; b+ s) is the umulative Poisson distri-

bution with mean b+s. The pivot V

1

has a Gaussian

distribution with mean 0 and width 1. Due to the

disreteness of the Poisson distribution however, V

2

is only an approximate pivot. This an be remedied

by introduing a uniform random variable U between

0 and 1, and replaing N by Y � N +U for the pur-

pose of applying the reipe of setion 2. This is noth-

ing more than a mathematial arti�e that provides

us with an invertible pivot involving N . Indeed, the

umulative distribution of Y , say F

+

Y

(y; b+ s), is an

invertible pivot with a uniform distribution between

0 and 1. Let G

+

(Y; V ) be the inverse of that pivot,

i.e. G

+

(y; V ) = � if and only if V = F

+

Y

(y; �). The

generalized test variable is then:

T = s +

�

x � V

1

�b

�

� G

+

(n; V

2

);

and the generalized p-value is:

p = IPr(T � 0 j s = 0):

From the de�nition of T it an be seen that this p-

value is simply the probability for the di�erene be-

tween a Gauss(x;�b) and a Gamma(n; 1) random

variable to be positive. Analytially, the p-value

equals the tail area of a onvolution between these

a

Pivots are random variables V

i

that depend on the data X

j

and the parameters �

k

, but whose joint distribution is free of

unknown parameters. They are alled invertible if, for �xed values of the X

j

, the mapping (�

k

)! (V

i

) is invertible.
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Figure 1. Comparative overage of p-values. The dotted line

represents exat overage. In the top plot, the overage of the

prior-preditive p-value is indistinguishable from that of the

generalized frequentist p-value. In the bottom plot, the over-

age of the generalized frequentist p-value is indistinguishable

from exat overage.

random variables; for n > 0 it is given by:

p =

Z

+1

0

dt

t

n�1

e

�t

�(n)

1 + erf

�

x�t

p

2�b

�

2

;

and we de�ne p to be 1 when n = 0. It is instru-

tive to ompare this p-value with two other methods.

The �rst one is quite popular in high-energy physis,

and onsists in alulating the p-value assuming a

�xed value for the nuisane parameter b, and then

to average this p-value over f

X

(x; b), onsidered as

a prior distribution for b. This yields the so-alled

\prior-preditive p-value" p

pp

, whih, for n > 0, is:

p

pp

=

Z

+1

0

dt

t

n�1

e

�t

�(n)

1 + erf

�

x�t

p

2�b

�

1 + erf

�

x

p

2�b

�

:

The seond method starts from the likelihood ratio

statisti:

� =

sup f

N

(n; b+ s) f

X

(x; b)

s=0; b�0

sup f

N

(n; b+ s) f

X

(x; b)

s�0; b�0

For large values of b, the distribution of �2 ln� under

H

0

is

1

2

�

2

0

+

1

2

�

2

1

, i.e. it assigns half a unit of probabil-

ity to the singleton f�2 ln� = 0g, whereas the other

half is distributed as a hisquared with one degree

of freedom over 0 < �2 ln� < +1. We then de�ne

the likelihood ratio p-value as the appropriate tail

area of this distribution. For small values of b this

is obviously an approximation, but not a bad one, in

the sense that the frequentist validity of the p-value

appears to be maintained: IPr(p � �) � �. Fig-

ure 1 ompares the overage probability IPr(p � �)

of the three p-values just disussed, as a funtion of

the signi�ane level �, for a simple numerial exam-

ple. The overage alulation utuates both n and

x. For small values of the bakground unertainty

�b, the likelihood ratio p-value is somewhat better

than the other two, but for large �b the generalized

frequentist p-value is learly superior.

3 Generalized Con�dene Intervals

A standard method for onstruting on�dene in-

tervals is based on pivots. Let Q(X; �) be a pivot for

a random variable X with distribution F

X

(x; �), and

let S

�

be a subset of the sample spae of Q suh that

IPr(Q(X; �) 2 S

�

) = �:

Note that the probability in this equation is unam-

biguously determined sine the distribution ofQ does

not depend on unknown parameters. Given an ob-

served value x for X , a 100�% on�dene interval for

� is then:

C

�

= f� : Q(x; �) 2 S

�

g

In problems for whih a onventional pivot is

not available, one an try to onstrut a general-

ized pivot, i.e. a funtion Q(X; x; �; �) of the random

variable X , its observed value x, the parameter of in-

terest �, and the nuisane parameter �, suh that the

following requirements are satis�ed:

1. Q(x; x; �; �) does not depend on �;

2. The distribution of Q(X; x; �; �) is free of (�; �).

Generalized on�dene intervals an then be de-

�ned similarly to onventional ones, but using

Q(X; x; �; �) instead of Q(X; �).

As with p-values, there is no systemati method

for generating all possible generalized pivots for a

problem, but a simple reipe is available.

3;4

It is

based on the same assumptions as those listed in se-

tion 2, and the reipe itself is almost idential to the

one used to obtain generalized test variables. The

only di�erene is step 2, whih beomes:

2. Replae the X

i

by their observed values x

i

.

In other words, given a generalized test variable

T (X; x; �; �), the orresponding generalized pivot is

obtained as Q(X; x; �; �) = � � T (X; x; �; �).
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3.1 Appliation to Poisson Upper Limits

Suppose that we observe a Poisson event ount X

1

with mean b+ ��, where b is a bakground, � a sen-

sitivity fator, and � a ross setion of interest:

X

1

� Poisson(b + � �):

Information about b and � are assumed to ome from

two auxiliary measurements:

X

2

� Poisson( b); X

3

� Poisson(� �);

where  and � are known onstants. Applying the

above reipe yields the following generalized pivot

for �:

Q =

�

�

G

�

(x

1

; V

1

) � G

�

(x

2

; V

2

)=

�

G

�

(x

3

; V

3

)

;

where, similarly to the G

+

introdued in setion 2.1,

G

�

is the inverse of the pivot de�ned by the umula-

tive distribution of X�U , X being a Poisson variate

and U a uniform one.

b

The V

i

quantities are inde-

pendent uniform random variables, and the x

i

are

the observed values of the orresponding X

i

.

Suppose now that we wish to alulate upper

limits on �. It is straightforward to verify that the

\observed" value of Q is the parameter of interest �.

Therefore, upper limits on � are obtained by alu-

lating the orresponding quantiles of the distribution

of Q. A numerial example of the overage of these

upper limits is shown in Figure 2, together with a

referene Bayes alulation. There is slight under-

overage at high � values.

Figure 2. Coverage of upper limits U on the ross setion of a

signal proess, as a funtion of the true value � of that ross

setion. The nominal unertainties on the bakground b and

the eÆieny � are 10%. Solid: generalized frequentist; dashes:

referene Bayes.

4 Summary

Generalized frequentist methods allow one to alu-

late signi�anes and on�dene intervals in a wide

variety of situations involving nuisane parameters.

In problems with ontinuous sample spaes,

these methods are based on exat probability state-

ments but do not have a onventional frequeny in-

terpretation. Nevertheless, their onventional fre-

quentist properties appear to be very good. In fat,

Hannig et al.

4

have shown that under some general

onditions, generalized on�dene intervals for salar

or vetor parameters have proper frequentist over-

age, at least asymptotially.

Although the urrent literature on generalized

frequentism does not appear to treat problems with

disrete sample spaes, we have desribed how

these an be solved by introduing a randomization

sheme.

Using a simple Poisson example, we have shown

that generalized frequentist methods ompare favor-

ably to other methods of eliminating nuisane pa-

rameters, suh as likelihood ratio and Bayes.
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When applying generalized frequentist methods to disrete distributions, the results depend slightly on the randomization sheme.

The use of G

+

in setion 2.1 was ditated by the desire to maintain overage, even though G

+

(x; V ) is not de�ned when x = 0.

In setion 3.1 it seems more important to use a funtion that is de�ned at x = 0, whih is the ase for G

�

(x; V ).


