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Generalized frequentism addresses problems that are not exactly solvable using conventional frequentism. Such prob-
lems include the calculation of p-values and confidence intervals when nuisance parameters are present, or when
interest is focused on a complicated function of the parameters of the model under consideration. Although gener-
alized frequentist methods are based on ezact probability statements, they do not necessarily yield coverage in the
conventional sense. However, simulation studies indicate that these methods tend to overcover, and often surpass
other available methods in terms of test power or interval length.

1 Introduction

An often challenging component of frequentist cal-
culations is the elimination of nuisance parameters.
There seems to be no method that is generally ap-
plicable and at the same time theoretically guaran-
teed to preserve exact coverage in all cases. However,
a couple of likelihood-based methods are known to
behave reasonably well in many situations. In the
first method, called profiling, the likelihood is mazi-
mized with respect to the nuisance parameters. The
second method, marginalization, integrates the like-
lihood over these parameters. Whichever technique
is chosen, its coverage properties for the problem at
hand must then be verified a posteriori.

This paper aims to present a third approach,
known as generalized frequentism.>? Its strategy is
to extend the conventional definitions of p-values
and confidence intervals in such a way that statis-
tical problems involving nuisance parameters can be
solved “exactly”, i.e. using exact probability state-
ments. The resulting generalized p-values and confi-
dence intervals tend to behave well with respect to
the usual frequentist definitions, hence their interest.

2 Generalized p-Values

Let X be a random variable with density f(z|6,v),
where 6 is the parameter of interest and v is a nui-
sance parameter. We are interested in testing:

Hy:0 < 6y versus H; : 0 > 6.

The usual way of solving this problem is to find a
test statistic T'(X), defined as a function of the data
X which does not depend on unknown parameters,
whose distribution is free of unknown nuisance pa-

rameters, and which is stochastically increasing with
0, i.e. such that the probability IPr(T'(X) > t|6)
increases with 6 for all . One then calculates the
p-value:

p = Pr[T(X) > T(x)| Ho],

where z is the observed value of X. A small p-value
indicates that the observed x does not support Hy.

There are many problems for which test statis-
tics as defined above simply do not exist. In these
cases a solution can be found by extending the def-
inition of test statistic to that of a generalized test
variable, which is a function T'(X, z,6,v) of the ran-
dom variable X, its observed value z (treated as a
constant), and the parameters 6 and v, such that the
following requirements are satisfied:

1. T'(z,x,0,v) does not depend on @ or v;

2. The distribution of T'(X,z,60y,v) under Hy is
free of v;

3. Given z and v, IPr[T(X,m,H,V) > t|0] is a
monotonic function of 6.

The generalized p-value based on T'(X, z,0,v) is de-
fined similarly to a conventional p-value:

p = ]Pr[T(X,x,G,V) > T(x,x,G,V)|H0].

We emphasize that in this probability statement,
only X is considered as a random variable, whereas
the observed value z is held constant. Because of
the way T'(X,x,0,v) is defined, this p-value is free
of unknown parameters and allows the desired inter-
pretation that small p corresponds to lack of sup-
port for Hy. However, although p is based on an
exact probability statement, the coverage probabil-
ity IPr(p < «) may depend on nuisance parameters
and needs to be checked explicitly.



There exists no general method that will system-
atically yield all possible generalized test variables
for a given problem. However, an easy and useful
recipe is available.>* To formulate it we consider a
slightly more general problem involving k& unknown
parameters ag,as,...,a, and where the parameter
of interest 6 is a function of the «;. We make the
following assumptions:

1. There exists a set of observable statistics,
(X1,Xs, ..., Xg), that is equal in number to the
number of unknown parameters «;.

2. There exists a set of invertible pivots?,
(V1,Va,..., Vi), relating the statistics (X;) to
the unknown parameters (a;).

The recipe is then as follows:

1. By writing the parameter of interest, 6, in terms
of the parameters «a;, express € in terms of the
statistics X; and the pivots V;.

2. Replace the X; by their observed values z; and
subtract the result from 6.

For a simple application of this recipe, consider a
sample {Y7,Y2,...,Y,} drawn from Gauss(u,o), a
Gaussian distribution with mean g and width o,
both unknown. We are interested in the ratio =
o/p. The sample mean and standard deviation are
a set of minimal sufficient statistics for p and o:
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relate the statistics (X1, X») to (i, 0), and have dis-
tributions free of unknown parameters:

Vi ~ Gauss(0,1) and Vo~ x4_;.

Applying the recipe yields a generalized test variable,
which can be written in terms of (V1, V) or (X1, X>»):
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The first expression for 1" shows that its distribution
under Hy is free of unknown parameters (the ob-
served values x; and o being treated as constants),
whereas the second expression shows that the ob-
served value of T is zero. The property of stochastic
monotonicity is somewhat harder to verify.
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2.1 Application to Poisson Significance Tests

For a slightly more complex application we turn to
a common problem in high-energy physics. Consider
a Poisson process consisting of a background with
strength b superimposed on a signal with strength s:

b+ s)?
fn(nsb+s) = (b+s)" ' ) e bs.
n!
The nuisance parameter b is determined from a Gaus-
sian measurement z:

e 3 (a)’
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It is assumed that b > 0 but that, due to resolution
effects, x can take both positive and negative val-
ues. We are interested in testing Hp : s = 0 versus
H, : s > 0. This problem has two parameters, b and
s, two statistics, NV and X, and two pivots:

X -b
CAb
where F(IN;b+ s) is the cumulative Poisson distri-
bution with mean b+ s. The pivot V; has a Gaussian
distribution with mean 0 and width 1. Due to the
discreteness of the Poisson distribution however, V5
is only an approximate pivot. This can be remedied

fx(z;b) =

i = and Vo = Fn(N;b+s),

by introducing a uniform random variable U between
0 and 1, and replacing N by Y = N + U for the pur-
pose of applying the recipe of section 2. This is noth-
ing more than a mathematical artifice that provides
us with an invertible pivot involving N. Indeed, the
cumulative distribution of Y, say Fy (y,b+ s), is an
invertible pivot with a uniform distribution between
0 and 1. Let G*(Y,V) be the inverse of that pivot,
ie. G*(y,V) = p if and only if V = F{(y, ). The
generalized test variable is then:

T =5+ (- ViAb) — G*(n,V2),
and the generalized p-value is:
p = Pr(T">0|s=0).

From the definition of T it can be seen that this p-
value is simply the probability for the difference be-
tween a Gauss(z, Ab) and a Gamma(n,1) random
variable to be positive. Analytically, the p-value
equals the tail area of a convolution between these

“Pivots are random variables V; that depend on the data X; and the parameters ay, but whose joint distribution is free of
unknown parameters. They are called invertible if, for fixed values of the X}, the mapping (ay) — (V) is invertible.
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Figure 1. Comparative coverage of p-values. The dotted line
represents exact coverage. In the top plot, the coverage of the
prior-predictive p-value is indistinguishable from that of the
generalized frequentist p-value. In the bottom plot, the cover-
age of the generalized frequentist p-value is indistinguishable
from exact coverage.

random variables; for n > 0 it is given by:

b — /+Oodt 1t 1+ erf( f{Atb)
0 I'(n) 2 ’

and we define p to be 1 when n = 0. It is instruc-
tive to compare this p-value with two other methods.
The first one is quite popular in high-energy physics,
and consists in calculating the p-value assuming a
fixed value for the nuisance parameter b, and then
to average this p-value over fx(x;b), considered as
a prior distribution for b. This yields the so-called
“prior-predictive p-value” py,, which, for n > 0, is:

o = [ et LRy
wp 0 '(n) 1+erf(ﬁ$Ab)
The second method starts from the likelihood ratio
statistic:

sup  fn(n;b+ ) fx(z;b)
s=0, b>0

sup  fn(n;b+s) fx(x;b)
50, b>0

A =

For large values of b, the distribution of —21n A under
Hyis 1x3+1x3, i.e. it assigns half a unit of probabil-
ity to the singleton {—2In A = 0}, whereas the other
half is distributed as a chisquared with one degree
of freedom over 0 < —2In A < 4+0co. We then define
the likelihood ratio p-value as the appropriate tail
area of this distribution. For small values of b this
is obviously an approximation, but not a bad one, in

the sense that the frequentist validity of the p-value
appears to be maintained: Pr(p < a) < a. Fig-
ure 1 compares the coverage probability Pr(p < a)
of the three p-values just discussed, as a function of
the significance level «, for a simple numerical exam-
ple. The coverage calculation fluctuates both n and
z. For small values of the background uncertainty
Ab, the likelihood ratio p-value is somewhat better
than the other two, but for large Ab the generalized
frequentist p-value is clearly superior.

3 Generalized Confidence Intervals

A standard method for constructing confidence in-
tervals is based on pivots. Let Q(X,#0) be a pivot for
a random variable X with distribution Fx (z;6), and
let S, be a subset of the sample space of () such that

Pr(Q(X,0) € Sa) = «a.

Note that the probability in this equation is unam-
biguously determined since the distribution of () does
not depend on unknown parameters. Given an ob-
served value z for X, a 100a% confidence interval for
6 is then:

Co = {0: Q(z,0) € Sy}

In problems for which a conventional pivot is
not available, one can try to construct a general-
ized pivot, i.e. a function Q(X,x,0,v) of the random
variable X, its observed value z, the parameter of in-
terest 6, and the nuisance parameter v, such that the
following requirements are satisfied:

1. Q(z,x,0,v) does not depend on v;
2. The distribution of Q(X,x,8,v) is free of (6, v).

Generalized confidence intervals can then be de-
fined similarly to conventional ones, but using
Q(X,z,0,v) instead of Q(X,6).

As with p-values, there is no systematic method
for generating all possible generalized pivots for a
problem, but a simple recipe is available.>* It is
based on the same assumptions as those listed in sec-
tion 2, and the recipe itself is almost identical to the
one used to obtain generalized test variables. The
only difference is step 2, which becomes:

2. Replace the X; by their observed values x;.

In other words, given a generalized test variable
T(X,z,0,v), the corresponding generalized pivot is
obtained as Q(X,z,0,v) =60 —T(X,z,0,v).



3.1 Application to Poisson Upper Limits

Suppose that we observe a Poisson event count X
with mean b 4 eo, where b is a background, € a sen-
sitivity factor, and o a cross section of interest:

X1 ~ Poisson(b + €0).

Information about b and € are assumed to come from
two auxiliary measurements:

Xs ~ Poisson(cb), X3 ~ Poisson(re),

where ¢ and 7 are known constants. Applying the
above recipe yields the following generalized pivot
for o:

T I:G_(QZ]_,‘/]_) - G_ (372,‘/72)/0]

©= G (w3,V3) ’

where, similarly to the G* introduced in section 2.1,
G~ is the inverse of the pivot defined by the cumula-
tive distribution of X —U, X being a Poisson variate
and U a uniform one.” The V; quantities are inde-
pendent uniform random variables, and the z; are
the observed values of the corresponding X;.

Suppose now that we wish to calculate upper
limits on o. It is straightforward to verify that the
“observed” value of () is the parameter of interest o.
Therefore, upper limits on o are obtained by calcu-
lating the corresponding quantiles of the distribution
of @. A numerical example of the coverage of these
upper limits is shown in Figure 2, together with a
reference Bayes calculation. There is slight under-
coverage at high o values.
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Figure 2. Coverage of upper limits U on the cross section of a
signal process, as a function of the true value o of that cross
section. The nominal uncertainties on the background b and
the efficiency € are 10%. Solid: generalized frequentist; dashes:
reference Bayes.

4 Summary

Generalized frequentist methods allow one to calcu-
late significances and confidence intervals in a wide
variety of situations involving nuisance parameters.

In problems with continuous sample spaces,
these methods are based on exact probability state-
ments but do not have a conventional frequency in-
terpretation. Nevertheless, their conventional fre-
quentist properties appear to be very good. In fact,
Hannig et al.* have shown that under some general
conditions, generalized confidence intervals for scalar
or vector parameters have proper frequentist cover-
age, at least asymptotically.

Although the current literature on generalized
frequentism does not appear to treat problems with
discrete sample spaces, we have described how
these can be solved by introducing a randomization
scheme.

Using a simple Poisson example, we have shown
that generalized frequentist methods compare favor-
ably to other methods of eliminating nuisance pa-
rameters, such as likelihood ratio and Bayes.
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