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Generalized frequentism addresses problems that are not exa
tly solvable using 
onventional frequentism. Su
h prob-

lems in
lude the 
al
ulation of p-values and 
on�den
e intervals when nuisan
e parameters are present, or when

interest is fo
used on a 
ompli
ated fun
tion of the parameters of the model under 
onsideration. Although gener-

alized frequentist methods are based on exa
t probability statements, they do not ne
essarily yield 
overage in the


onventional sense. However, simulation studies indi
ate that these methods tend to over
over, and often surpass

other available methods in terms of test power or interval length.

1 Introdu
tion

An often 
hallenging 
omponent of frequentist 
al-


ulations is the elimination of nuisan
e parameters.

There seems to be no method that is generally ap-

pli
able and at the same time theoreti
ally guaran-

teed to preserve exa
t 
overage in all 
ases. However,

a 
ouple of likelihood-based methods are known to

behave reasonably well in many situations. In the

�rst method, 
alled pro�ling, the likelihood is maxi-

mized with respe
t to the nuisan
e parameters. The

se
ond method, marginalization, integrates the like-

lihood over these parameters. Whi
hever te
hnique

is 
hosen, its 
overage properties for the problem at

hand must then be veri�ed a posteriori.

This paper aims to present a third approa
h,

known as generalized frequentism.
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Its strategy is

to extend the 
onventional de�nitions of p-values

and 
on�den
e intervals in su
h a way that statis-

ti
al problems involving nuisan
e parameters 
an be

solved \exa
tly", i.e. using exa
t probability state-

ments. The resulting generalized p-values and 
on�-

den
e intervals tend to behave well with respe
t to

the usual frequentist de�nitions, hen
e their interest.

2 Generalized p-Values

Let X be a random variable with density f(x j �; �),

where � is the parameter of interest and � is a nui-

san
e parameter. We are interested in testing:

H

0

: � � �

0

versus H

1

: � > �

0

:

The usual way of solving this problem is to �nd a

test statisti
 T (X), de�ned as a fun
tion of the data

X whi
h does not depend on unknown parameters,

whose distribution is free of unknown nuisan
e pa-

rameters, and whi
h is sto
hasti
ally in
reasing with

�, i.e. su
h that the probability IPr(T (X) � t j �)

in
reases with � for all t. One then 
al
ulates the

p-value:

p = IPr

�

T (X) � T (x) jH

0

�

;

where x is the observed value of X . A small p-value

indi
ates that the observed x does not support H

0

.

There are many problems for whi
h test statis-

ti
s as de�ned above simply do not exist. In these


ases a solution 
an be found by extending the def-

inition of test statisti
 to that of a generalized test

variable, whi
h is a fun
tion T (X; x; �; �) of the ran-

dom variable X , its observed value x (treated as a


onstant), and the parameters � and �, su
h that the

following requirements are satis�ed:

1. T (x; x; �; �) does not depend on � or �;

2. The distribution of T (X; x; �

0

; �) under H

0

is

free of �;

3. Given x and �, IPr

�

T (X; x; �; �) � t j �

�

is a

monotoni
 fun
tion of �.

The generalized p-value based on T (X; x; �; �) is de-

�ned similarly to a 
onventional p-value:

p = IPr

�

T (X; x; �; �) � T (x; x; �; �) jH

0

�

:

We emphasize that in this probability statement,

only X is 
onsidered as a random variable, whereas

the observed value x is held 
onstant. Be
ause of

the way T (X; x; �; �) is de�ned, this p-value is free

of unknown parameters and allows the desired inter-

pretation that small p 
orresponds to la
k of sup-

port for H

0

. However, although p is based on an

exa
t probability statement, the 
overage probabil-

ity IPr(p � �) may depend on nuisan
e parameters

and needs to be 
he
ked expli
itly.
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There exists no general method that will system-

ati
ally yield all possible generalized test variables

for a given problem. However, an easy and useful

re
ipe is available.
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To formulate it we 
onsider a

slightly more general problem involving k unknown

parameters �

1

; �

2

; : : : ; �

k

, and where the parameter

of interest � is a fun
tion of the �

i

. We make the

following assumptions:

1. There exists a set of observable statisti
s,

(X

1

; X

2

; : : : ; X

k

), that is equal in number to the

number of unknown parameters �

i

.

2. There exists a set of invertible pivots

a

,

(V

1

; V

2

; : : : ; V

k

), relating the statisti
s (X

i

) to

the unknown parameters (�

i

).

The re
ipe is then as follows:

1. By writing the parameter of interest, �, in terms

of the parameters �

i

, express � in terms of the

statisti
s X

i

and the pivots V

i

.

2. Repla
e the X

i

by their observed values x

i

and

subtra
t the result from �.

For a simple appli
ation of this re
ipe, 
onsider a

sample fY

1

; Y

2

; : : : ; Y

n

g drawn from Gauss(�; �), a

Gaussian distribution with mean � and width �,

both unknown. We are interested in the ratio � �

�=�. The sample mean and standard deviation are

a set of minimal suÆ
ient statisti
s for � and �:

X

1

�

1

n

n

X

i=1

Y

i

and X

2

�

v

u

u

t

1

n� 1

n

X

i=1

�

Y

i

�X

1

�

2

:

The random variables

V

1

�

X

1

� �

�=

p

n

and V

2

�

nX

2

2

�

2

relate the statisti
s (X

1

; X

2

) to (�; �), and have dis-

tributions free of unknown parameters:

V

1

� Gauss(0; 1) and V

2

� �

2

n�1

:

Applying the re
ipe yields a generalized test variable,

whi
h 
an be written in terms of (V

1

; V

2

) or (X

1

; X

2

):

T � � �

p

nx

2

x

1

p

V

2

� x

2

V

1

= � �

�

x

1

X

2

=x

2

+ ��X

1

:

The �rst expression for T shows that its distribution

under H

0

is free of unknown parameters (the ob-

served values x

1

and x

2

being treated as 
onstants),

whereas the se
ond expression shows that the ob-

served value of T is zero. The property of sto
hasti


monotoni
ity is somewhat harder to verify.

2.1 Appli
ation to Poisson Signi�
an
e Tests

For a slightly more 
omplex appli
ation we turn to

a 
ommon problem in high-energy physi
s. Consider

a Poisson pro
ess 
onsisting of a ba
kground with

strength b superimposed on a signal with strength s:

f

N

(n; b+ s) =

(b+ s)

n

n!

e

�b�s

:

The nuisan
e parameter b is determined from a Gaus-

sian measurement x:

f

X

(x; b) =

e

�

1

2

(

x�b

�b

)

2

p

2��b

:

It is assumed that b � 0 but that, due to resolution

e�e
ts, x 
an take both positive and negative val-

ues. We are interested in testing H

0

: s = 0 versus

H

1

: s > 0. This problem has two parameters, b and

s, two statisti
s, N and X , and two pivots:

V

1

=

X � b

�b

and V

2

= F

N

(N ; b+ s);

where F

N

(N ; b+ s) is the 
umulative Poisson distri-

bution with mean b+s. The pivot V

1

has a Gaussian

distribution with mean 0 and width 1. Due to the

dis
reteness of the Poisson distribution however, V

2

is only an approximate pivot. This 
an be remedied

by introdu
ing a uniform random variable U between

0 and 1, and repla
ing N by Y � N +U for the pur-

pose of applying the re
ipe of se
tion 2. This is noth-

ing more than a mathemati
al arti�
e that provides

us with an invertible pivot involving N . Indeed, the


umulative distribution of Y , say F

+

Y

(y; b+ s), is an

invertible pivot with a uniform distribution between

0 and 1. Let G

+

(Y; V ) be the inverse of that pivot,

i.e. G

+

(y; V ) = � if and only if V = F

+

Y

(y; �). The

generalized test variable is then:

T = s +

�

x � V

1

�b

�

� G

+

(n; V

2

);

and the generalized p-value is:

p = IPr(T � 0 j s = 0):

From the de�nition of T it 
an be seen that this p-

value is simply the probability for the di�eren
e be-

tween a Gauss(x;�b) and a Gamma(n; 1) random

variable to be positive. Analyti
ally, the p-value

equals the tail area of a 
onvolution between these

a

Pivots are random variables V

i

that depend on the data X

j

and the parameters �

k

, but whose joint distribution is free of

unknown parameters. They are 
alled invertible if, for �xed values of the X

j

, the mapping (�

k

)! (V

i

) is invertible.
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Figure 1. Comparative 
overage of p-values. The dotted line

represents exa
t 
overage. In the top plot, the 
overage of the

prior-predi
tive p-value is indistinguishable from that of the

generalized frequentist p-value. In the bottom plot, the 
over-

age of the generalized frequentist p-value is indistinguishable

from exa
t 
overage.

random variables; for n > 0 it is given by:

p =

Z

+1

0

dt

t

n�1

e

�t

�(n)

1 + erf

�

x�t

p

2�b

�

2

;

and we de�ne p to be 1 when n = 0. It is instru
-

tive to 
ompare this p-value with two other methods.

The �rst one is quite popular in high-energy physi
s,

and 
onsists in 
al
ulating the p-value assuming a

�xed value for the nuisan
e parameter b, and then

to average this p-value over f

X

(x; b), 
onsidered as

a prior distribution for b. This yields the so-
alled

\prior-predi
tive p-value" p

pp

, whi
h, for n > 0, is:

p

pp

=

Z

+1

0

dt

t

n�1

e

�t

�(n)

1 + erf

�

x�t

p

2�b

�

1 + erf

�

x

p

2�b

�

:

The se
ond method starts from the likelihood ratio

statisti
:

� =

sup f

N

(n; b+ s) f

X

(x; b)

s=0; b�0

sup f

N

(n; b+ s) f

X

(x; b)

s�0; b�0

For large values of b, the distribution of �2 ln� under

H

0

is

1

2

�

2

0

+

1

2

�

2

1

, i.e. it assigns half a unit of probabil-

ity to the singleton f�2 ln� = 0g, whereas the other

half is distributed as a 
hisquared with one degree

of freedom over 0 < �2 ln� < +1. We then de�ne

the likelihood ratio p-value as the appropriate tail

area of this distribution. For small values of b this

is obviously an approximation, but not a bad one, in

the sense that the frequentist validity of the p-value

appears to be maintained: IPr(p � �) � �. Fig-

ure 1 
ompares the 
overage probability IPr(p � �)

of the three p-values just dis
ussed, as a fun
tion of

the signi�
an
e level �, for a simple numeri
al exam-

ple. The 
overage 
al
ulation 
u
tuates both n and

x. For small values of the ba
kground un
ertainty

�b, the likelihood ratio p-value is somewhat better

than the other two, but for large �b the generalized

frequentist p-value is 
learly superior.

3 Generalized Con�den
e Intervals

A standard method for 
onstru
ting 
on�den
e in-

tervals is based on pivots. Let Q(X; �) be a pivot for

a random variable X with distribution F

X

(x; �), and

let S

�

be a subset of the sample spa
e of Q su
h that

IPr(Q(X; �) 2 S

�

) = �:

Note that the probability in this equation is unam-

biguously determined sin
e the distribution ofQ does

not depend on unknown parameters. Given an ob-

served value x for X , a 100�% 
on�den
e interval for

� is then:

C

�

= f� : Q(x; �) 2 S

�

g

In problems for whi
h a 
onventional pivot is

not available, one 
an try to 
onstru
t a general-

ized pivot, i.e. a fun
tion Q(X; x; �; �) of the random

variable X , its observed value x, the parameter of in-

terest �, and the nuisan
e parameter �, su
h that the

following requirements are satis�ed:

1. Q(x; x; �; �) does not depend on �;

2. The distribution of Q(X; x; �; �) is free of (�; �).

Generalized 
on�den
e intervals 
an then be de-

�ned similarly to 
onventional ones, but using

Q(X; x; �; �) instead of Q(X; �).

As with p-values, there is no systemati
 method

for generating all possible generalized pivots for a

problem, but a simple re
ipe is available.

3;4

It is

based on the same assumptions as those listed in se
-

tion 2, and the re
ipe itself is almost identi
al to the

one used to obtain generalized test variables. The

only di�eren
e is step 2, whi
h be
omes:

2. Repla
e the X

i

by their observed values x

i

.

In other words, given a generalized test variable

T (X; x; �; �), the 
orresponding generalized pivot is

obtained as Q(X; x; �; �) = � � T (X; x; �; �).
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3.1 Appli
ation to Poisson Upper Limits

Suppose that we observe a Poisson event 
ount X

1

with mean b+ ��, where b is a ba
kground, � a sen-

sitivity fa
tor, and � a 
ross se
tion of interest:

X

1

� Poisson(b + � �):

Information about b and � are assumed to 
ome from

two auxiliary measurements:

X

2

� Poisson(
 b); X

3

� Poisson(� �);

where 
 and � are known 
onstants. Applying the

above re
ipe yields the following generalized pivot

for �:

Q =

�

�

G

�

(x

1

; V

1

) � G

�

(x

2

; V

2

)=


�

G

�

(x

3

; V

3

)

;

where, similarly to the G

+

introdu
ed in se
tion 2.1,

G

�

is the inverse of the pivot de�ned by the 
umula-

tive distribution of X�U , X being a Poisson variate

and U a uniform one.

b

The V

i

quantities are inde-

pendent uniform random variables, and the x

i

are

the observed values of the 
orresponding X

i

.

Suppose now that we wish to 
al
ulate upper

limits on �. It is straightforward to verify that the

\observed" value of Q is the parameter of interest �.

Therefore, upper limits on � are obtained by 
al
u-

lating the 
orresponding quantiles of the distribution

of Q. A numeri
al example of the 
overage of these

upper limits is shown in Figure 2, together with a

referen
e Bayes 
al
ulation. There is slight under-


overage at high � values.

Figure 2. Coverage of upper limits U on the 
ross se
tion of a

signal pro
ess, as a fun
tion of the true value � of that 
ross

se
tion. The nominal un
ertainties on the ba
kground b and

the eÆ
ien
y � are 10%. Solid: generalized frequentist; dashes:

referen
e Bayes.

4 Summary

Generalized frequentist methods allow one to 
al
u-

late signi�
an
es and 
on�den
e intervals in a wide

variety of situations involving nuisan
e parameters.

In problems with 
ontinuous sample spa
es,

these methods are based on exa
t probability state-

ments but do not have a 
onventional frequen
y in-

terpretation. Nevertheless, their 
onventional fre-

quentist properties appear to be very good. In fa
t,

Hannig et al.

4

have shown that under some general


onditions, generalized 
on�den
e intervals for s
alar

or ve
tor parameters have proper frequentist 
over-

age, at least asymptoti
ally.

Although the 
urrent literature on generalized

frequentism does not appear to treat problems with

dis
rete sample spa
es, we have des
ribed how

these 
an be solved by introdu
ing a randomization

s
heme.

Using a simple Poisson example, we have shown

that generalized frequentist methods 
ompare favor-

ably to other methods of eliminating nuisan
e pa-

rameters, su
h as likelihood ratio and Bayes.
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b

When applying generalized frequentist methods to dis
rete distributions, the results depend slightly on the randomization s
heme.

The use of G

+

in se
tion 2.1 was di
tated by the desire to maintain 
overage, even though G

+

(x; V ) is not de�ned when x = 0.

In se
tion 3.1 it seems more important to use a fun
tion that is de�ned at x = 0, whi
h is the 
ase for G

�

(x; V ).


