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As a arefully thought-out attempt to develop the objetive side of Bayesian inferene, referene analysis provides

proedures for point and interval estimation, hypothesis testing, and the onstrution of objetive posterior distribu-

tions. For physiists, the interest of these proedures lies in their very general appliability, their invariane under

reparametrization, their oherene, and their good performane under repeated sampling.

1 Introdution

One aspet that distinguishes experimental inferene

in physis from that in other sienes is the obje-

tive randomness of quantum proesses. As a result,

statistial models for quantum phenomena are exat,

supporting a strit frequentist analysis of their mea-

surement. Nevertheless, Caves et al.

1

have brilliantly

motivated a subjetive Bayesian interpretation of

quantum probabilities, whose form depends on the

information available to the observer but is other-

wise fully presribed by a fundamental law. When

dealing with atual measurements however, no fun-

damental law onstrains their analysis, summary and

report, so that some other objetive method must be

found.

Ideally, suh a method should be very general,

appliable to all kinds of measurements regardless

of the number and type of parameters and data in-

volved. It should make use of all available informa-

tion, and oherently so, in the sense that if there is

more than one way to extrat all relevant informa-

tion from data, the �nal result will not depend on the

hosen way. The desiderata of generality, exhaustive-

ness and oherene are satis�ed by Bayesian proe-

dures, but that of objetivity is more problemati

due to the Bayesian requirement of speifying prior

probabilities in terms of degrees of belief. Referene

analysis
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, an objetive Bayesian method developed

over the past twenty-�ve years, solves this problem

by replaing the question \what is our prior degree

of belief?" by \what would our posterior degree of

belief be, if our prior knowledge had a minimal e�et,

relative to the data, on the �nal inferene?"

In addition to an objetive method for speify-

ing priors, referene analysis provides tehniques to

summarize posterior distributions in terms of point

estimates and intervals, and to test preise hypothe-

ses against vague alternatives, a notoriously subtle

problem. All these tehniques are based on informa-

tion theory, and in partiular on the entral onept

of intrinsi disrepany between two probability dis-

tributions. This onept is introdued in setion 2

and applied to the de�nition of referene priors in

setion 3. Setion 4 desribes the extration of in-

trinsi point and interval estimates from posterior

distributions.

Due to spae limitations, the development of the

paper is rather oneptual, with few details in the

alulations. The interested reader is enouraged to

onsult the referenes, espeially Bernardo
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.

2 Intrinsi Disrepany and Missing

Information

The intrinsi disrepany between two probability

densities p

1

and p

2

is de�ned as:
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is the Kullbak-Leibler divergene between p

i

and

p

j

. The intrinsi disrepany Æfp

1

; p

2

g is symmet-

ri, non-negative, and vanishes if and only if p

1

(x) =

p

2

(x) almost everywhere. It is invariant under one-

to-one transformations of x, and is information-

additive: the disrepany for a set of n independent

observations is n times the disrepany for one ob-

servation. A simple interpretation of Æfp

1

; p

2

g is as

a measure, in natural information units, of the min-

imum amount of information that one observation

may be expeted to provide in order to disriminate

between p

1

and p

2

. Another interpretation is as the

minimum expeted log-likelihood ratio in favor of the

probability model that generates the data.

Suppose now that we have a parametri model
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for some data x:

M� fp(x j �); x 2 X ; � 2 �g;

and onsider the joint probability density of x and

�, p(x; �) = p(x j �) p(�), where p(�) is a prior for

�. Relative to the produt of marginals p(x)p(�),

the joint density aptures in some sense the infor-

mation arried by x about �. This suggests de�ning

the expeted intrinsi information Ifp(�) jMg, from

one observation ofM about the value of � when the

prior density is p(�), as:

Ifp(�) jMg = Æfp(x; �); p(x) p(�)g; (3)

where p(x) =

R

d� p(x j �) p(�). Aording to this def-

inition, the stronger the prior knowledge desribed

by p(�), the smaller the information the data may

be expeted to provide, and vie-versa. In the limit

where p(�) is a delta funtion, Ifp(�) jMg = 0

Next, onsider the intrinsi information about �,

Ifp(�);M

k

g, whih ould be expeted from making

k independent observations fromM. As k inreases,

the true value of � would beome preisely known.

Thus, as k !1, Ifp(�);M

k

g measures the amount

of missing information about � whih orresponds to

the prior p(�).

3 Referene Priors

Let P be a lass of suÆiently regular priors that

are ompatible with whatever initial information is

available about the value of �. The referene prior is

de�ned to be that prior funtion �(�) = �(� jM;P)

whih maximizes the missing information about the

value of � within the lass P . The limiting proe-

dure used to de�ne the missing information requires

some are in the alulation of �(�). Formally, one

introdues an inreasing sequene of subsets �

i

of

the parameter spae �, suh that lim

i!1

�

i

= �

and

R

�

i

�(�) d� < 1. The referene prior �(�) is

then de�ned as satisfying:

lim

k!1

�

If�

i

jM

k

g � Ifp

i

jM

k

g

�

� 0

for all �

i

; for all p 2 P ; (4)

where �

i

(�) and p

i

(�) are the renormalized restri-

tions of �(�) and p(�) to �

i

.

If the parameter spae is �nite and dis-

rete, � = f�

1

; : : : ; �

m

g, the missing information

is simply the entropy of the prior distribution,

�

P

m

i=1

p(�

i

) ln p(�

i

), and one reovers the prior pro-

posed by Jaynes for this ase. If the parameter is

ontinuous and one-dimensional, and regularity on-

ditions that guarantee asymptoti normality are sat-

is�ed, then the referene prior is Je�reys' prior:

�(�) / i(�)

1=2

;

where i(�) = �

Z

X

dx p(x j �)

�

2

��

2

ln p(x j �): (5)

Note that in the de�nition of referene priors,

the limit k ! 1 is not an approximation, but an

essential part of the de�nition, sine the referene

prior maximizes the missing information, whih is

the expeted disrepany between prior knowledge

and perfet knowledge. A pratial advantage of this

limiting proedure is that it ensures that referene

priors only depend on the asymptoti behavior of the

model, thereby greatly simplifying their derivation.

It an be shown that referene priors are inde-

pendent of sample size, ompatible with suÆient

statistis (meaning that their form does not de-

pend on whether the model is or is not expressed in

terms of suÆient statistis), and onsistent under

reparametrization (i.e. if � is a one-to-one transfor-

mation of �, then their referene posterior densities

are related by �(� jx) = �(� jx) jd�=d�j).

Finally, it is important to emphasize that ref-

erene priors do not represent subjetive belief and

should not be interpreted as prior probability distri-

butions (in fat, they are often improper). Only ref-

erene posteriors have a probability interpretation.

3.1 Treatment of Nuisane Parameters

Suppose the statistial model is p(x j �; �), with �

the parameter of interest and � a nuisane parame-

ter. We now need a joint referene prior �(�; �). The

algorithm is sequential:

1. Hold � onstant and apply the one-parameter

referene algorithm to obtain the onditional

referene prior �(� j �).

2. Derive the one-parameter integrated model:

p(x j �) =

Z

�

d� p(x j �; �) �(� j �);

where � is the parameter spae for �.

3. Apply the one-parameter referene algorithm

again, this time to p(x j �), and obtain the

marginal referene prior �(�).

4. Set �(�; �) = �(� j �) �(�).
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Note that step 2 will not work if �(� j �) is improper

(p(x j �) will not be normalizable). The solution is

to introdue a sequene f�

i

g

1

i=1

of subsets of � that

onverges to � and suh that �(� j �) is integrable

over eah �

i

. The integration at step 2 is then per-

formed over �

i

instead of �. This proedure results

in a sequene of posteriors f�

i

(� jx)g

1

i=1

whih on-

verges to the desired referene posterior.

The above algorithm is easily generalized to any

number of parameters. However, its sequential har-

ater requires that the parameters be ordered. In

most appliations the order does not a�et the re-

sult, but there are exeptions. Di�erent orderings

may then be used as part of a robustness analysis.

Within a single model it is in priniple possible

to have as many referene priors as there are poten-

tial parameters of interest. Indeed, there is no reason

for a setup that maximizes the missing information

about a parameter � to be idential to a setup that

maximizes the missing information about a parame-

ter �, unless � is a one-to-one funtion of �.

3.2 Example: a Cross Setion Measurement

We illustrate the onstrution of referene priors with

a ommon problem in high energy physis, that of ex-

trating a ross setion � from an observed number

of events n. The latter is assumed to have a Poisson

distribution with a mean of the form b + ��, where

the sensitivity fator � and the bakground b are nui-

sane parameters. The model is:

p(n j�; �; b) =

(b+ ��)

n

n!

e

�b���

: (6)

Note that �, �, and b are not identi�able from a given

n. This problem is usually addressed by using infor-

mation from alibration data or simulation studies

to form a proper, subjetive prior for � and b, say

�(�; b). We must therefore �nd the onditional refer-

ene prior �(� j �; b). If � and b were exatly known,

the referene prior for � would simply be Je�reys'

prior. From the Fisher information for �:

�

��

= E

�

�

�

2

��

2

ln p(n j�; �; b)

�

=

�

2

b+ ��

; (7)

this Je�reys' prior is alulated to be:

�

J

(� j �; b) /

�

p

b+ ��

: (8)

However, this is not the referene prior for this prob-

lem, i.e. the prior that would be obtained by strit

appliation of equation (4). Although the � depen-

dene of �

J

is orret, its � dependene is not, and

this matters beause �

J

is improper and � is an un-

known parameter. As shown in Sun and Berger
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, the

orret referene prior is obtained by renormalizing

the above prior using a sequene of nested ompat

sets for �. A natural hoie for these sets is [0; u℄,

with u > 0. Normalizing the above prior over suh a

set yields:

�

u

(� j �; b) =

�

p

b+ ��

1(u � �)

2

p

b+ �u � 2

p

b

;

where 1(u � �) is 1 if u � � and 0 otherwise. The

orret onditional referene prior is then:

�(� j �; b) = lim

u!1

�

u

(� j �; b)

�

u

(�

0

j �

0

; b

0

)

/

r

�

b+ ��

;

with (�

0

; �

0

; b

0

) any �xed point. Although this prior

is still improper, its � dependene is di�erent from

that of equation (8).

We an now write down the referene posterior

when � is the parameter of interest:

�(� jn) /

Z

1

0

d�

Z

1

0

db

(b+ ��)

n

e

�b���

n!

p

� �(�; b)

p

b+ ��

:

(9)

An important aspet of referene posteriors is their

behavior under repeated sampling. To test this, we

alulate an upper limit U on �, assuming a produt

of gamma densities for the subjetive prior �(�; b):

�(�; b) =

�(��)

x�1=2

e

���

�(x+ 1=2)

(b)

y�1=2

e

�b

�(y + 1=2)

: (10)

As we are dealing with a mixture of subjetive and

objetive priors, some are is needed in speifying

the ensemble with respet to whih the overage of

U is to be alulated. Datta and Sweeting

4

suggest

to average the overage with respet to the subjetive

omponents of the prior. An example of alulation

based on this presription is shown in Figure 1.

Figure 1. Coverage of 90% redibility level referene Bayes

upper limits on a signal ross setion �, as a funtion of the

true value of that ross setion.
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The overage appears to onverge asymptotially to-

wards the redibility level. Although this behaviour

is typial of all suÆiently regular priors, in many

ases the onvergene is faster when a referene prior

is used.

4 Intrinsi Estimation and Testing

It is well known that the Bayesian outome of a prob-

lem of inferene is preisely the full posterior distri-

bution for the parameter of interest. However, it is

often useful and sometimes even neessary to sum-

marize the posterior distribution by providing a mea-

sure of loation and quoting regions of given poste-

rior probability ontent.

The typial Bayesian approah formulates point

and interval estimation as deision problems. Sup-

pose that

^

� is an estimate of the parameter �, whose

true value �

t

is unknown. One spei�es a loss fun-

tion `(

^

�; �

t

), whih measures the onsequene of us-

ing the model p(x j

^

�) instead of the true model

p(x j �

t

). The Bayes estimator �

b

of � minimizes the

orresponding posterior loss:

�

b

(x) = arg min

^

�2�

Z

�

d� `(

^

�; �) p(� jx):

In physis, interest usually fouses on the atual

mehanism that governs the data. Therefore we

need point and interval estimates that are invari-

ant under one-to-one transformations of the param-

eter and the data (inluding redution to suÆient

statistis). A loss funtion that will deliver suh

an estimate is the intrinsi disrepany: `(

^

�; �

t

) =

Æfp(x j

^

�); p(x j �

t

)g. Its referene posterior expeta-

tion is:

d(

^

� jx) =

Z

�

d� Æfp(x j

^

�); p(x j �)g �

Æ

(� jx); (11)

where �

Æ

(� jx) is the referene posterior when the

intrinsi disrepany is the parameter of interest.

The intrinsi estimator of � minimizes d(

^

� jx):

�

?

(x) = arg min

^

�2�

d(

^

� jx); (12)

and an intrinsi �-redible region for � is a subset

R

?

�

of the parameter spae � suh that:

Z

R

?

�

d� �(� jx) = �; and

for all � 2 R

?

�

; �

0

=2 R

?

�

: d(� jx) � d(�

0

jx): (13)

Although the onepts of intrinsi estimator and

redible region have been de�ned here for referene

problems, they an also be used in situations where

proper, subjetive prior information is available.

Finally, in hypothesis testing, a typial problem

is to deide whether a preise value �

0

may be used

as a \proxy" for the unknown value of �. The refer-

ene approah is to use d(�

0

jx) from equation (11),

with �

0

replaing

^

�, as an intrinsi test statisti. Its

magnitude is a diret measure of the evidene against

the null hypothesis � = �

0

.

5 Summary

Noninformative priors have been studied for a long

time and most of them have been found defetive in

more than one way. Referene analysis arose from

this study as the only general method that produes

priors that have the required invariane properties,

deal suessfully with the marginalization paradoxes,

and have onsistent sampling properties.

Referene priors should not be interpreted as

probability distributions expressing subjetive de-

gree of belief; instead, they help answer the question

of what ould be said about the quantity of interest

if one's prior knowledge were dominated by the data.

Referene analysis also provides methods for

summarizing the posterior density of a measurement.

Intrinsi point estimates, redible intervals, and hy-

pothesis tests have invariane properties that are es-

sential for sienti� inferene.
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