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As a carefully thought-out attempt to develop the objective side of Bayesian inference, reference analysis provides
procedures for point and interval estimation, hypothesis testing, and the construction of objective posterior distribu-
tions. For physicists, the interest of these procedures lies in their very general applicability, their invariance under
reparametrization, their coherence, and their good performance under repeated sampling.

1 Introduction

One aspect that distinguishes experimental inference
in physics from that in other sciences is the objec-
tive randomness of quantum processes. As a result,
statistical models for quantum phenomena are exact,
supporting a strict frequentist analysis of their mea-
surement. Nevertheless, Caves et al.' have brilliantly
motivated a subjective Bayesian interpretation of
quantum probabilities, whose form depends on the
information available to the observer but is other-
wise fully prescribed by a fundamental law. When
dealing with actual measurements however, no fun-
damental law constrains their analysis, summary and
report, so that some other objective method must be
found.

Ideally, such a method should be very general,
applicable to all kinds of measurements regardless
of the number and type of parameters and data in-
volved. It should make use of all available informa-
tion, and coherently so, in the sense that if there is
more than one way to extract all relevant informa-
tion from data, the final result will not depend on the
chosen way. The desiderata of generality, exhaustive-
ness and coherence are satisfied by Bayesian proce-
dures, but that of objectivity is more problematic
due to the Bayesian requirement of specifying prior
probabilities in terms of degrees of belief. Reference
analysis?, an objective Bayesian method developed
over the past twenty-five years, solves this problem
by replacing the question “what is our prior degree
of belief?” by “what would our posterior degree of
belief be, if our prior knowledge had a minimal effect,
relative to the data, on the final inference?”

In addition to an objective method for specify-
ing priors, reference analysis provides techniques to
summarize posterior distributions in terms of point
estimates and intervals, and to test precise hypothe-

ses against vague alternatives, a notoriously subtle
problem. All these techniques are based on informa-
tion theory, and in particular on the central concept
of intrinsic discrepancy between two probability dis-
tributions. This concept is introduced in section 2
and applied to the definition of reference priors in
section 3. Section 4 describes the extraction of in-
trinsic point and interval estimates from posterior
distributions.

Due to space limitations, the development of the
paper is rather conceptual, with few details in the
calculations. The interested reader is encouraged to
consult the references, especially Bernardo?.

2 Intrinsic Discrepancy and Missing
Information

The intrinsic discrepancy between two probability
densities p; and ps is defined as:

o{pr,p2p = min{ k{p1[p2}, £{p2[p}}, (1)

where k{p;|p;} = /da:pj(m) lnzzg)) (2)

is the Kullback-Leibler divergence between p; and
pj. The intrinsic discrepancy 6{pi,p>} is symmet-
ric, non-negative, and vanishes if and only if p; (z) =
p2(x) almost everywhere. It is invariant under one-
to-one transformations of x, and is information-
additive: the discrepancy for a set of n independent

observations is n times the discrepancy for one ob-
servation. A simple interpretation of 6{pi,p2} is as
a measure, in natural information units, of the min-
imum amount of information that one observation
may be expected to provide in order to discriminate
between p; and ps. Another interpretation is as the
minimum expected log-likelihood ratio in favor of the
probability model that generates the data.

Suppose now that we have a parametric model



for some data x:
M= {p(z]8), z € X, § € O},

and consider the joint probability density of  and
0, p(x,0) = p(xz|0)p(f), where p(f) is a prior for
0. Relative to the product of marginals p(z)p(f),
the joint density captures in some sense the infor-
mation carried by « about 6. This suggests defining
the expected intrinsic information I{p(#) | M}, from
one observation of M about the value of § when the
prior density is p(#), as:

Hp#) | M} = d{p(x,0), p(x)p(0)},  (3)

where p(z) = [df p(x|6) p(6). According to this def-
inition, the stronger the prior knowledge described
by p(#), the smaller the information the data may
be expected to provide, and vice-versa. In the limit
where p(6) is a delta function, I'{p(f) | M} =0

Next, consider the intrinsic information about 6,
I{p(#), M*}, which could be expected from making
k independent observations from M. As k increases,
the true value of 6 would become precisely known.
Thus, as k — oo, I{p(#), M*} measures the amount
of missing information about 6 which corresponds to
the prior p(#).

3 Reference Priors

Let P be a class of sufficiently regular priors that
are compatible with whatever initial information is
available about the value of 8. The reference prior is
defined to be that prior function 7(0) = (6 | M, P)
which maximizes the missing information about the
value of 6§ within the class P. The limiting proce-
dure used to define the missing information requires
some care in the calculation of 7(#). Formally, one
introduces an increasing sequence of subsets ©; of
the parameter space ©, such that lim; ,,,©; = ©
and [y m(#) df < oco. The reference prior m(f) is
then defined as satisfying:

Jim [[{mi [M*} = I{p; [ M*}] > 0
—00
for all ©;, forallp e P, (4)
where 7;(f) and p;(f) are the renormalized restric-
tions of 7(6) and p(f) to O;.
If the parameter space is finite and dis-

crete, © = {61,...,0,,}, the missing information
is simply the entropy of the prior distribution,

— > p(6;) Inp(6;), and one recovers the prior pro-
posed by Jaynes for this case. If the parameter is
continuous and one-dimensional, and regularity con-
ditions that guarantee asymptotic normality are sat-
isfied, then the reference prior is Jeffreys’ prior:

m(6) oci(6)'/?,

where i(0) = —/de p(z|0) %lnp(mW). (5)

Note that in the definition of reference priors,
the limit & — oo is not an approximation, but an
essential part of the definition, since the reference
prior maximizes the missing information, which is
the expected discrepancy between prior knowledge
and perfect knowledge. A practical advantage of this
limiting procedure is that it ensures that reference
priors only depend on the asymptotic behavior of the
model, thereby greatly simplifying their derivation.

It can be shown that reference priors are inde-
pendent of sample size, compatible with sufficient
statistics (meaning that their form does not de-
pend on whether the model is or is not expressed in
terms of sufficient statistics), and consistent under
reparametrization (i.e. if ¢ is a one-to-one transfor-
mation of #, then their reference posterior densities
are related by (¢ |z) = 7(8|x) |d8/d¢|).

Finally, it is important to emphasize that ref-
erence priors do not represent subjective belief and
should not be interpreted as prior probability distri-
butions (in fact, they are often improper). Only ref-
erence posteriors have a probability interpretation.

3.1 Treatment of Nuisance Parameters

Suppose the statistical model is p(z |6,), with 0
the parameter of interest and A a nuisance parame-
ter. We now need a joint reference prior 7(6, A). The
algorithm is sequential:

1. Hold 6 constant and apply the one-parameter
reference algorithm to obtain the conditional
reference prior 7(A|6).

2. Derive the one-parameter integrated model:

p(z]6) = /Adxpuw,» 7(A]6),

where A is the parameter space for .

3. Apply the one-parameter reference algorithm
again, this time to p(z|#), and obtain the
marginal reference prior 7(6).

4. Set w(6,\) = w(\|0) =(0).



Note that step 2 will not work if 7(\ | 8) is improper
(p(z ]| 0) will not be normalizable). The solution is
to introduce a sequence {A;}$2, of subsets of A that
converges to A and such that w(\|6) is integrable
over each A;. The integration at step 2 is then per-
formed over A; instead of A. This procedure results
in a sequence of posteriors {m;(#|x)}52, which con-
verges to the desired reference posterior.

The above algorithm is easily generalized to any
number of parameters. However, its sequential char-
acter requires that the parameters be ordered. In
most applications the order does not affect the re-
sult, but there are exceptions. Different orderings
may then be used as part of a robustness analysis.

Within a single model it is in principle possible
to have as many reference priors as there are poten-
tial parameters of interest. Indeed, there is no reason
for a setup that maximizes the missing information
about a parameter 6 to be identical to a setup that
maximizes the missing information about a parame-
ter n, unless 7 is a one-to-one function of 6.

3.2 Ezxzample: a Cross Section Measurement

We illustrate the construction of reference priors with
a common problem in high energy physics, that of ex-
tracting a cross section o from an observed number
of events n. The latter is assumed to have a Poisson
distribution with a mean of the form b + eo, where
the sensitivity factor € and the background b are nui-
sance parameters. The model is:

n

p(n|o,eb) = % e beo, (6)
Note that o, €, and b are not identifiable from a given
n. This problem is usually addressed by using infor-
mation from calibration data or simulation studies
to form a proper, subjective prior for € and b, say
7(e,b). We must therefore find the conditional refer-
ence prior 7(o | €,b). If € and b were exactly known,
the reference prior for ¢ would simply be Jeffreys’
prior. From the Fisher information for o:

2 2

0
Yoo = E —Wlnp(nw,e,b) = , (1)

this Jeffreys’ prior is calculated to be:

€
Vb +eo

However, this is not the reference prior for this prob-
lem, i.e. the prior that would be obtained by strict

(8)

wr(o|eb) x

application of equation (4). Although the o depen-
dence of w7 is correct, its € dependence is not, and
this matters because 77 is improper and € is an un-
known parameter. As shown in Sun and Berger?, the
correct reference prior is obtained by renormalizing
the above prior using a sequence of nested compact
sets for o. A natural choice for these sets is [0, u],
with u > 0. Normalizing the above prior over such a
set yields:

1(u >
mu(olet) = =< wzo)
Vb+eo 2b+eu — 200
where 1(u > ) is 1 if u > ¢ and 0 otherwise. The
correct conditional reference prior is then:

. mu(0 | €,b) [ ¢
b) = 1 _—
(o€ b) e mu(00 | €0, bo) i b+eo’

with (o0, €0, bo) any fixed point. Although this prior
is still improper, its € dependence is different from
that of equation (8).

We can now write down the reference posterior
when o is the parameter of interest:

[ (b4 eo) e 7 \Jem(e,b)
(o |n) oc/ode/o db p \/b+—60(9)

An important aspect of reference posteriors is their
behavior under repeated sampling. To test this, we
calculate an upper limit U on o, assuming a product
of gamma densities for the subjective prior 7 (e, b):

T(Te)z—1/2 e~ TE C(Cb)y—1/2 e—cb
[(z+1/2) F(y+1/2)
As we are dealing with a mixture of subjective and
objective priors, some care is needed in specifying
the ensemble with respect to which the coverage of
U is to be calculated. Datta and Sweeting? suggest
to average the coverage with respect to the subjective
components of the prior. An example of calculation

based on this prescription is shown in Figure 1.
1.05

m(e,b) = (10)
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Figure 1. Coverage of 90% credibility level reference Bayes
upper limits on a signal cross section ¢, as a function of the
true value of that cross section.



The coverage appears to converge asymptotically to-
wards the credibility level. Although this behaviour
is typical of all sufficiently regular priors, in many
cases the convergence is faster when a reference prior
is used.

4 Intrinsic Estimation and Testing

It is well known that the Bayesian outcome of a prob-
lem of inference is precisely the full posterior distri-
bution for the parameter of interest. However, it is
often useful and sometimes even necessary to sum-
marize the posterior distribution by providing a mea-
sure of location and quoting regions of given poste-
rior probability content.

The typical Bayesian approach formulates point
and interval estimation as decision problems. Sup-
pose that 6 is an estimate of the parameter 6, whose
true value 6; is unknown. One specifies a loss func-
tion Z(é, 6:), which measures the consequence of us-
ing the model p(z|6) instead of the true model
p(z|0¢). The Bayes estimator ¢, of § minimizes the
corresponding posterior loss:

Op(x) = arg min /d0 K(é,@) p(@]x).
bco Jo

In physics, interest usually focuses on the actual
mechanism that governs the data. Therefore we
need point and interval estimates that are invari-
ant under one-to-one transformations of the param-
eter and the data (including reduction to sufficient
statistics). A loss function that will deliver such
an estimate is the intrinsic discrepancy: £(,6;) =
8{p(x|0),p(x|6;)}. Its reference posterior expecta-
tion is:

df|x) = /®d9 o{p(x]0),p(x[0)} m5(0|2), (11)
where 75(6|z) is the reference posterior when the
intrinsic discrepancy is the parameter of interest.

The intrinsic estimator of § minimizes d(é | z):

0*(¢) = arg min d(d|x), (12)
0c®

and an intrinsic a-credible region for € is a subset
R}, of the parameter space O such that:

/d07r(9|a:) = «, and
R

forall € R:, 0" ¢ R :d(f|z) <d(O'|z). (13)

Although the concepts of intrinsic estimator and
credible region have been defined here for reference

problems, they can also be used in situations where
proper, subjective prior information is available.

Finally, in hypothesis testing, a typical problem
is to decide whether a precise value 6y may be used
as a “proxy” for the unknown value of 6. The refer-
ence approach is to use d(f | z) from equation (11),
with 6y replacing é, as an intrinsic test statistic. Its
magnitude is a direct measure of the evidence against
the null hypothesis § = 6.

5 Summary

Noninformative priors have been studied for a long
time and most of them have been found defective in
more than one way. Reference analysis arose from
this study as the only general method that produces
priors that have the required #nvariance properties,
deal successfully with the marginalization paradoxes,
and have consistent sampling properties.

Reference priors should not be interpreted as
probability distributions expressing subjective de-
gree of belief; instead, they help answer the question
of what could be said about the quantity of interest
if one’s prior knowledge were dominated by the data.

Reference analysis also provides methods for
summarizing the posterior density of a measurement.
Intrinsic point estimates, credible intervals, and hy-
pothesis tests have invariance properties that are es-
sential for scientific inference.
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