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As a 
arefully thought-out attempt to develop the obje
tive side of Bayesian inferen
e, referen
e analysis provides

pro
edures for point and interval estimation, hypothesis testing, and the 
onstru
tion of obje
tive posterior distribu-

tions. For physi
ists, the interest of these pro
edures lies in their very general appli
ability, their invarian
e under

reparametrization, their 
oheren
e, and their good performan
e under repeated sampling.

1 Introdu
tion

One aspe
t that distinguishes experimental inferen
e

in physi
s from that in other s
ien
es is the obje
-

tive randomness of quantum pro
esses. As a result,

statisti
al models for quantum phenomena are exa
t,

supporting a stri
t frequentist analysis of their mea-

surement. Nevertheless, Caves et al.
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have brilliantly

motivated a subje
tive Bayesian interpretation of

quantum probabilities, whose form depends on the

information available to the observer but is other-

wise fully pres
ribed by a fundamental law. When

dealing with a
tual measurements however, no fun-

damental law 
onstrains their analysis, summary and

report, so that some other obje
tive method must be

found.

Ideally, su
h a method should be very general,

appli
able to all kinds of measurements regardless

of the number and type of parameters and data in-

volved. It should make use of all available informa-

tion, and 
oherently so, in the sense that if there is

more than one way to extra
t all relevant informa-

tion from data, the �nal result will not depend on the


hosen way. The desiderata of generality, exhaustive-

ness and 
oheren
e are satis�ed by Bayesian pro
e-

dures, but that of obje
tivity is more problemati


due to the Bayesian requirement of spe
ifying prior

probabilities in terms of degrees of belief. Referen
e

analysis
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, an obje
tive Bayesian method developed

over the past twenty-�ve years, solves this problem

by repla
ing the question \what is our prior degree

of belief?" by \what would our posterior degree of

belief be, if our prior knowledge had a minimal e�e
t,

relative to the data, on the �nal inferen
e?"

In addition to an obje
tive method for spe
ify-

ing priors, referen
e analysis provides te
hniques to

summarize posterior distributions in terms of point

estimates and intervals, and to test pre
ise hypothe-

ses against vague alternatives, a notoriously subtle

problem. All these te
hniques are based on informa-

tion theory, and in parti
ular on the 
entral 
on
ept

of intrinsi
 dis
repan
y between two probability dis-

tributions. This 
on
ept is introdu
ed in se
tion 2

and applied to the de�nition of referen
e priors in

se
tion 3. Se
tion 4 des
ribes the extra
tion of in-

trinsi
 point and interval estimates from posterior

distributions.

Due to spa
e limitations, the development of the

paper is rather 
on
eptual, with few details in the


al
ulations. The interested reader is en
ouraged to


onsult the referen
es, espe
ially Bernardo

2

.

2 Intrinsi
 Dis
repan
y and Missing

Information

The intrinsi
 dis
repan
y between two probability

densities p

1

and p

2

is de�ned as:
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is the Kullba
k-Leibler divergen
e between p

i

and

p

j

. The intrinsi
 dis
repan
y Æfp

1

; p

2

g is symmet-

ri
, non-negative, and vanishes if and only if p

1

(x) =

p

2

(x) almost everywhere. It is invariant under one-

to-one transformations of x, and is information-

additive: the dis
repan
y for a set of n independent

observations is n times the dis
repan
y for one ob-

servation. A simple interpretation of Æfp

1

; p

2

g is as

a measure, in natural information units, of the min-

imum amount of information that one observation

may be expe
ted to provide in order to dis
riminate

between p

1

and p

2

. Another interpretation is as the

minimum expe
ted log-likelihood ratio in favor of the

probability model that generates the data.

Suppose now that we have a parametri
 model
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for some data x:

M� fp(x j �); x 2 X ; � 2 �g;

and 
onsider the joint probability density of x and

�, p(x; �) = p(x j �) p(�), where p(�) is a prior for

�. Relative to the produ
t of marginals p(x)p(�),

the joint density 
aptures in some sense the infor-

mation 
arried by x about �. This suggests de�ning

the expe
ted intrinsi
 information Ifp(�) jMg, from

one observation ofM about the value of � when the

prior density is p(�), as:

Ifp(�) jMg = Æfp(x; �); p(x) p(�)g; (3)

where p(x) =

R

d� p(x j �) p(�). A

ording to this def-

inition, the stronger the prior knowledge des
ribed

by p(�), the smaller the information the data may

be expe
ted to provide, and vi
e-versa. In the limit

where p(�) is a delta fun
tion, Ifp(�) jMg = 0

Next, 
onsider the intrinsi
 information about �,

Ifp(�);M

k

g, whi
h 
ould be expe
ted from making

k independent observations fromM. As k in
reases,

the true value of � would be
ome pre
isely known.

Thus, as k !1, Ifp(�);M

k

g measures the amount

of missing information about � whi
h 
orresponds to

the prior p(�).

3 Referen
e Priors

Let P be a 
lass of suÆ
iently regular priors that

are 
ompatible with whatever initial information is

available about the value of �. The referen
e prior is

de�ned to be that prior fun
tion �(�) = �(� jM;P)

whi
h maximizes the missing information about the

value of � within the 
lass P . The limiting pro
e-

dure used to de�ne the missing information requires

some 
are in the 
al
ulation of �(�). Formally, one

introdu
es an in
reasing sequen
e of subsets �

i

of

the parameter spa
e �, su
h that lim

i!1

�

i

= �

and

R

�

i

�(�) d� < 1. The referen
e prior �(�) is

then de�ned as satisfying:

lim

k!1

�

If�

i

jM

k

g � Ifp

i

jM

k

g

�

� 0

for all �

i

; for all p 2 P ; (4)

where �

i

(�) and p

i

(�) are the renormalized restri
-

tions of �(�) and p(�) to �

i

.

If the parameter spa
e is �nite and dis-


rete, � = f�

1

; : : : ; �

m

g, the missing information

is simply the entropy of the prior distribution,

�

P

m

i=1

p(�

i

) ln p(�

i

), and one re
overs the prior pro-

posed by Jaynes for this 
ase. If the parameter is


ontinuous and one-dimensional, and regularity 
on-

ditions that guarantee asymptoti
 normality are sat-

is�ed, then the referen
e prior is Je�reys' prior:

�(�) / i(�)

1=2

;

where i(�) = �

Z

X

dx p(x j �)

�

2

��

2

ln p(x j �): (5)

Note that in the de�nition of referen
e priors,

the limit k ! 1 is not an approximation, but an

essential part of the de�nition, sin
e the referen
e

prior maximizes the missing information, whi
h is

the expe
ted dis
repan
y between prior knowledge

and perfe
t knowledge. A pra
ti
al advantage of this

limiting pro
edure is that it ensures that referen
e

priors only depend on the asymptoti
 behavior of the

model, thereby greatly simplifying their derivation.

It 
an be shown that referen
e priors are inde-

pendent of sample size, 
ompatible with suÆ
ient

statisti
s (meaning that their form does not de-

pend on whether the model is or is not expressed in

terms of suÆ
ient statisti
s), and 
onsistent under

reparametrization (i.e. if � is a one-to-one transfor-

mation of �, then their referen
e posterior densities

are related by �(� jx) = �(� jx) jd�=d�j).

Finally, it is important to emphasize that ref-

eren
e priors do not represent subje
tive belief and

should not be interpreted as prior probability distri-

butions (in fa
t, they are often improper). Only ref-

eren
e posteriors have a probability interpretation.

3.1 Treatment of Nuisan
e Parameters

Suppose the statisti
al model is p(x j �; �), with �

the parameter of interest and � a nuisan
e parame-

ter. We now need a joint referen
e prior �(�; �). The

algorithm is sequential:

1. Hold � 
onstant and apply the one-parameter

referen
e algorithm to obtain the 
onditional

referen
e prior �(� j �).

2. Derive the one-parameter integrated model:

p(x j �) =

Z

�

d� p(x j �; �) �(� j �);

where � is the parameter spa
e for �.

3. Apply the one-parameter referen
e algorithm

again, this time to p(x j �), and obtain the

marginal referen
e prior �(�).

4. Set �(�; �) = �(� j �) �(�).
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Note that step 2 will not work if �(� j �) is improper

(p(x j �) will not be normalizable). The solution is

to introdu
e a sequen
e f�

i

g

1

i=1

of subsets of � that


onverges to � and su
h that �(� j �) is integrable

over ea
h �

i

. The integration at step 2 is then per-

formed over �

i

instead of �. This pro
edure results

in a sequen
e of posteriors f�

i

(� jx)g

1

i=1

whi
h 
on-

verges to the desired referen
e posterior.

The above algorithm is easily generalized to any

number of parameters. However, its sequential 
har-

a
ter requires that the parameters be ordered. In

most appli
ations the order does not a�e
t the re-

sult, but there are ex
eptions. Di�erent orderings

may then be used as part of a robustness analysis.

Within a single model it is in prin
iple possible

to have as many referen
e priors as there are poten-

tial parameters of interest. Indeed, there is no reason

for a setup that maximizes the missing information

about a parameter � to be identi
al to a setup that

maximizes the missing information about a parame-

ter �, unless � is a one-to-one fun
tion of �.

3.2 Example: a Cross Se
tion Measurement

We illustrate the 
onstru
tion of referen
e priors with

a 
ommon problem in high energy physi
s, that of ex-

tra
ting a 
ross se
tion � from an observed number

of events n. The latter is assumed to have a Poisson

distribution with a mean of the form b + ��, where

the sensitivity fa
tor � and the ba
kground b are nui-

san
e parameters. The model is:

p(n j�; �; b) =

(b+ ��)

n

n!

e

�b���

: (6)

Note that �, �, and b are not identi�able from a given

n. This problem is usually addressed by using infor-

mation from 
alibration data or simulation studies

to form a proper, subje
tive prior for � and b, say

�(�; b). We must therefore �nd the 
onditional refer-

en
e prior �(� j �; b). If � and b were exa
tly known,

the referen
e prior for � would simply be Je�reys'

prior. From the Fisher information for �:

�

��

= E

�

�

�

2

��

2

ln p(n j�; �; b)

�

=

�

2

b+ ��

; (7)

this Je�reys' prior is 
al
ulated to be:

�

J

(� j �; b) /

�

p

b+ ��

: (8)

However, this is not the referen
e prior for this prob-

lem, i.e. the prior that would be obtained by stri
t

appli
ation of equation (4). Although the � depen-

den
e of �

J

is 
orre
t, its � dependen
e is not, and

this matters be
ause �

J

is improper and � is an un-

known parameter. As shown in Sun and Berger
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, the


orre
t referen
e prior is obtained by renormalizing

the above prior using a sequen
e of nested 
ompa
t

sets for �. A natural 
hoi
e for these sets is [0; u℄,

with u > 0. Normalizing the above prior over su
h a

set yields:

�

u

(� j �; b) =

�

p

b+ ��

1(u � �)

2

p

b+ �u � 2

p

b

;

where 1(u � �) is 1 if u � � and 0 otherwise. The


orre
t 
onditional referen
e prior is then:

�(� j �; b) = lim

u!1

�

u

(� j �; b)

�

u

(�

0

j �

0

; b

0

)

/

r

�

b+ ��

;

with (�

0

; �

0

; b

0

) any �xed point. Although this prior

is still improper, its � dependen
e is di�erent from

that of equation (8).

We 
an now write down the referen
e posterior

when � is the parameter of interest:

�(� jn) /

Z

1

0

d�

Z

1

0

db

(b+ ��)

n

e

�b���

n!

p

� �(�; b)

p

b+ ��

:

(9)

An important aspe
t of referen
e posteriors is their

behavior under repeated sampling. To test this, we


al
ulate an upper limit U on �, assuming a produ
t

of gamma densities for the subje
tive prior �(�; b):

�(�; b) =

�(��)

x�1=2

e

���

�(x+ 1=2)


(
b)

y�1=2

e

�
b

�(y + 1=2)

: (10)

As we are dealing with a mixture of subje
tive and

obje
tive priors, some 
are is needed in spe
ifying

the ensemble with respe
t to whi
h the 
overage of

U is to be 
al
ulated. Datta and Sweeting

4

suggest

to average the 
overage with respe
t to the subje
tive


omponents of the prior. An example of 
al
ulation

based on this pres
ription is shown in Figure 1.

Figure 1. Coverage of 90% 
redibility level referen
e Bayes

upper limits on a signal 
ross se
tion �, as a fun
tion of the

true value of that 
ross se
tion.
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The 
overage appears to 
onverge asymptoti
ally to-

wards the 
redibility level. Although this behaviour

is typi
al of all suÆ
iently regular priors, in many


ases the 
onvergen
e is faster when a referen
e prior

is used.

4 Intrinsi
 Estimation and Testing

It is well known that the Bayesian out
ome of a prob-

lem of inferen
e is pre
isely the full posterior distri-

bution for the parameter of interest. However, it is

often useful and sometimes even ne
essary to sum-

marize the posterior distribution by providing a mea-

sure of lo
ation and quoting regions of given poste-

rior probability 
ontent.

The typi
al Bayesian approa
h formulates point

and interval estimation as de
ision problems. Sup-

pose that

^

� is an estimate of the parameter �, whose

true value �

t

is unknown. One spe
i�es a loss fun
-

tion `(

^

�; �

t

), whi
h measures the 
onsequen
e of us-

ing the model p(x j

^

�) instead of the true model

p(x j �

t

). The Bayes estimator �

b

of � minimizes the


orresponding posterior loss:

�

b

(x) = arg min

^

�2�

Z

�

d� `(

^

�; �) p(� jx):

In physi
s, interest usually fo
uses on the a
tual

me
hanism that governs the data. Therefore we

need point and interval estimates that are invari-

ant under one-to-one transformations of the param-

eter and the data (in
luding redu
tion to suÆ
ient

statisti
s). A loss fun
tion that will deliver su
h

an estimate is the intrinsi
 dis
repan
y: `(

^

�; �

t

) =

Æfp(x j

^

�); p(x j �

t

)g. Its referen
e posterior expe
ta-

tion is:

d(

^

� jx) =

Z

�

d� Æfp(x j

^

�); p(x j �)g �

Æ

(� jx); (11)

where �

Æ

(� jx) is the referen
e posterior when the

intrinsi
 dis
repan
y is the parameter of interest.

The intrinsi
 estimator of � minimizes d(

^

� jx):

�

?

(x) = arg min

^

�2�

d(

^

� jx); (12)

and an intrinsi
 �-
redible region for � is a subset

R

?

�

of the parameter spa
e � su
h that:

Z

R

?

�

d� �(� jx) = �; and

for all � 2 R

?

�

; �

0

=2 R

?

�

: d(� jx) � d(�

0

jx): (13)

Although the 
on
epts of intrinsi
 estimator and


redible region have been de�ned here for referen
e

problems, they 
an also be used in situations where

proper, subje
tive prior information is available.

Finally, in hypothesis testing, a typi
al problem

is to de
ide whether a pre
ise value �

0

may be used

as a \proxy" for the unknown value of �. The refer-

en
e approa
h is to use d(�

0

jx) from equation (11),

with �

0

repla
ing

^

�, as an intrinsi
 test statisti
. Its

magnitude is a dire
t measure of the eviden
e against

the null hypothesis � = �

0

.

5 Summary

Noninformative priors have been studied for a long

time and most of them have been found defe
tive in

more than one way. Referen
e analysis arose from

this study as the only general method that produ
es

priors that have the required invarian
e properties,

deal su

essfully with the marginalization paradoxes,

and have 
onsistent sampling properties.

Referen
e priors should not be interpreted as

probability distributions expressing subje
tive de-

gree of belief; instead, they help answer the question

of what 
ould be said about the quantity of interest

if one's prior knowledge were dominated by the data.

Referen
e analysis also provides methods for

summarizing the posterior density of a measurement.

Intrinsi
 point estimates, 
redible intervals, and hy-

pothesis tests have invarian
e properties that are es-

sential for s
ienti�
 inferen
e.
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