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Abstract
We review the definition and interpretation of p values, describe methods to
incorporate systematic uncertainties in their calculation, and briefly discuss
a non-regular but common problem caused by nuisance parameters that are
unidentified under the null hypothesis.

1 Introduction

Statistical theory offers three main paradigms for testing hypotheses: the Bayesian construction of hy-
pothesis probabilities, Neyman-Pearson procedures for controlling frequentist error rates, and Fisher’s
evidential interpretation of tail probabilities. Since practitioners often attempt to combine elements from
different approaches, especially the last two, it is useful to illustrate with a couple of examples how they
actually address different questions [1].

The first example concerns the selection of a sample of pp̄ collision events for measuring the mass
of the top quark. For each event one must decide between two hypotheses, H0 : The event is background,
versus H1 : The event contains a top quark. Since the same testing procedure is sequentially repeated
on a large number of events, the decision must be made in such a way that the rate of wrong decisions is
fully controlled in the long run. Traditionally, this problem is solved with the help of Neyman-Pearson
theory, with a terminology adapted to physics goals: the Type-I error rate α translates to background
contamination, and the power of the test to selection efficiency. In principle either hypothesis can be
assigned the role of H0 in this procedure. Since only the Type-I error rate is directly adjustable by
the investigator (via the size of the critical region), a potentially useful criterion is to define as H0 the
hypothesis for which it is deemed more important to control the incorrect rejection probability than the
incorrect acceptance probability.

The second example is encountered in searches for new phenomena, when one has observed an
enhancement in a background spectrum and one wishes to characterize and quantify the evidence this
provides against the background-only null hypothesis. When a well-defined alternative hypothesis can
be formulated, a coherent characterization is best done with the help of likelihood ratios [2] or Bayes
factors [3]. Often however, the alternative is not unique, and there is a desire to quantify the evidence
against the null hypothesis in a way that does not depend on the alternative. Although the idea that this
can be done meaningfully is rejected by some statisticians, it has a long history in the scientific and
statistics literature. The method of solution is based on p values, the focus of this contribution.

Section 2 reviews the definition and interpretation of p values. A major obstacle to their calculation
is assessing the effect of systematic uncertainties. As is standard in high energy physics, we assume
that the latter can be modelled by so-called nuisance parameters [4], so that the task of incorporating a
systematic uncertainty (physics terminology) reduces to that of eliminating the corresponding nuisance
parameter (statistics terminology). Methods for solving this problem are described in section 3. A non-
regular form of this problem, known among physicists as the “look-elsewhere” effect, is briefly discussed
in section 4. Our conclusions are contained in section 5.

2 Definition and Interpretation of p Values

Suppose we collect some data X and wish to test a hypothesis H0 about the distribution f(x | θ) of the
underlying population. The first step is to find a test statistic T (X) such that large realizations of its
observed value, t0 ≡ T (x0), are evidence against H0. One way to calibrate this evidence is to compute



the probability for observing T = t0 or a larger value under H0; this tail probability is known as the p
value of the test:

p = IPr(T ≥ t0 |H0). (1)
Hence, small p values are evidence against H0. The usefulness of this calibration is that the distribution
of p under H0 is in principle uniform, and therefore known to the experimenter and the same in all
testing problems to which the procedure is applied. Unfortunately, in practice it is often difficult to
obtain uniform p values, either because the test statistic is discrete or because of the presence of nuisance
parameters. The following terminology characterizes the null distribution of p values:

p exact or uniform ⇔ IPr(p ≤ α |H0) = α,
p conservative or overcovering ⇔ IPr(p ≤ α |H0) < α,
p liberal or undercovering ⇔ IPr(p ≤ α |H0) > α,

where α is a number between 0 and 1. Compared to an exact p value, a conservative one tends to
understate the evidence against H0, whereas a liberal one tends to overstate it. It is of course possible for
a p value to be conservative for some values of α and liberal for others.

Even though the definition of p values is straightforward, their interpretation is notoriously subtle
and has been the subject of numerous papers in the statistics literature. Here we limit ourselves to a
few important caveats. The first one is that p values are not frequentist error rates or confidence levels.
Indeed, the latter are performance criteria that must be chosen before the experiment is done, whereas
p values are post-data measures of evidence. Secondly, p values should not be confused with posterior
hypothesis probabilities. Compared to the latter, p values often tend to exaggerate the evidence against
the null hypothesis. Finally, the notion that equal p values represent equal amounts of evidence should
be regarded with a healthy dose of scepticism. Arguments can be formulated to show that the evidence
provided by a p value depends on sample size as well as on the type of hypothesis being tested.

Because of these and other caveats, it is better to treat p values as nothing more than useful ex-
ploratory tools or measures of surprise. In any search for new physics, a small p value should only be
seen as a first step in the interpretation of the data, to be followed by a serious investigation of an alter-
native hypothesis. Only by showing that the latter provides a better explanation of the observations than
the null hypothesis can one make a convincing case for discovery. A detailed discussion of the role of p
value tests can be found in Refs.[5, 6].

3 Incorporating Systematic Uncertainties

In order to evaluate the various methods that are available to incorporate systematic uncertainties in p
value calculations, it is useful to discuss some properties one would like these methods to enjoy:

1. Uniformity: An important aspect of p values is their uniformity under H0, since this is how the
evidence provided by a test statistic is calibrated. If exact uniformity is not achievable in finite
samples, then asymptotic uniformity may still provide a useful criterion.

2. Monotonicity: For a fixed data sample, increases in systematic uncertainty should devalue the
evidence against H0, i.e. increase the p value.

3. Generality: The method should not depend on the testing problem having a special structure, but
should be applicable to as wide a range of situations as possible.

4. Power: Although p values are generally not constructed with a specific alternative in mind, it
may sometimes be useful to compare their power against a whole class of physically relevant
alternatives.

To compare methods we consider the following benchmark problem. A measurement N = n0 is
made of a Poisson variate N whose mean is the sum of a background strength ν and a signal strength µ:

IPr(N = n0) =
(ν + µ)n0

n0!
e−ν−µ. (2)
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We wish to test
H0 : µ = 0 versus H1 : µ > 0. (3)

Since large values of n0 are evidence against H0 in the direction of H1, the p value is simply:

p =
+∞
∑

n=n0

νn

n!
e−ν , (4)

and requires knowledge of ν to be computed. A frequent situation is that only partial information is
available about ν, either from an auxiliary measurement or from a Bayesian prior. In the next subsec-
tions we examine six methods for incorporating such information in the calculation of p: conditioning,
supremum, confidence set, bootstrap, prior-predictive, and posterior-predictive. In principle all of these
methods can be applied to the case where information about ν comes from an actual measurement, but
only the last two can handle information in the form of a prior.

3.1 Conditioning Method

Suppose we make an independent, Poisson distributed measurement M of the quantity τν, with τ a
known constant. The conditional distribution of N , given a fixed value s0 of the sum S ≡ N + M , is
binomial:

IPr(N = n0 |S = s0) =
IPr(N = n0 and S = s0)

IPr(S = s0)
=

IPr(N = n0) IPr(M = s0 − n0)

IPr(S = s0)

=

(

s0

n0

) (

1 + µ/ν

1 + µ/ν + τ

)n0
(

1 − 1 + µ/ν

1 + µ/ν + τ

)s0−n0

. (5)

Under the null hypothesis that µ = 0 this distribution is independent of the nuisance parameter ν and
can therefore be used to compute a p value:

pcond =

s0
∑

n=n0

(

s0

n

) (

1

1 + τ

)n (

1 − 1

1 + τ

)s0−n

. (6)

Because of the discreteness of the measurements N and M , pcond is by construction a conservative p
value. For continuous measurements it would be exact.

Note that tail probabilities of the distribution (5) cannot be used to construct confidence intervals
for µ under H1, since the dependence on ν is only eliminated under H0. Such a limitation does not exist
when the mean of the Poisson variate N is the product rather than the sum of µ and ν. The product case
leads to a well-known technique for calculating confidence intervals on the ratio of two Poisson means.

As illustrated above, the conditioning method requires the existence of a statistic S that is suffi-
cient for the nuisance parameter under the null hypothesis. This special structure is not present in most
problems encountered in high energy physics. Although other special structures are sometimes available,
it is clear that a more universal approach is needed for routine applications.

3.2 Supremum Method

A very general technique consists in maximizing the p value with respect to the nuisance parameter(s):

psup = sup
ν

p(ν). (7)

It may happen that the supremum is reached at some value νmax within the interior of the ν region
allowed by the null hypothesis. In this case psup = p(νmax). Clearly, νmax is in no sense a valid estimate
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of the true value of ν. Hence, the supremum method should not be confused with “profiling”, which
consists in substituting the maximum likelihood estimate of ν in p(ν), and which will be discussed as
one of the bootstrap methods in section 3.4.

In contrast with pcond, psup is not a tail probability. It is conservative by construction, and may
yield the trivial result psup = 1 if one is not careful in the choice of test statistic. In general the likelihood
ratio is a good choice. Suppose for example that in our benchmark problem information about ν is
available in the form of a Gaussian measurement X = x0 with mean ν and known standard deviation
∆ν (in this form the problem cannot be solved by the conditioning method). The likelihood function is
then:

L(ν, µ |n0, x0) =
(ν + µ)n0 e−ν−µ

n0!

e
− 1

2

“

x0−ν

∆ν

”2

√
2π ∆ν

. (8)

We assume that x0 can take on negative as well as positive values due to resolution effects. The likelihood
ratio statistic is:

λ(n0, x0) =
sup[ ν≥0 & µ=0 ] L(ν, µ |n0, x0)

sup[ ν≥0 & µ≥0 ] L(ν, µ |n0, x0)
=

L
(

ˆ̂ν, 0
∣

∣n0, x0

)

L
(

µ̂, ν̂
∣

∣n0, x0

) , (9)

where ˆ̂ν is the maximum likelihood estimate of ν under the constraint of the null hypothesis:

ˆ̂ν =
x0 − ∆ν2

2
+

√

(

x0 − ∆ν2

2

)2

+ n0 ∆ν2, (10)

and (µ̂, ν̂) the unconditional maximum likelihood estimate of (µ, ν):

(µ̂ , ν̂) =















(n0 , 0) if x0 < 0,

(n0 − x0 , x0) if 0 ≤ x0 ≤ n0,

(0 , ˆ̂ν) if x0 > n0.

(11)

Plugging ˆ̂ν, ν̂, and µ̂ into equation (9) and taking twice the negative logarithm yields finally:

−2 ln λ(n0, x0) =















2n0 ln(n0/ˆ̂ν) − ˆ̂ν2/∆ν2 if x0 < 0,

2n0 ln(n0/ˆ̂ν) − (ˆ̂ν2 − x2
0)/∆ν2 if 0 ≤ x0 ≤ n0,

0 if x0 > n0.

(12)

Tail probabilities of the distribution of −2 ln λ under the null hypothesis are easily calculable by numer-
ical methods. Setting q0 ≡ −2 ln λ(n0, x0), the observed value of −2 ln λ, we have:

IPr
[

−2 ln λ(N, X) ≥ q0

∣

∣

∣
µ = 0, ν ≥ 0

]

=
∑

n

∫

dx

−2 ln λ(n,x)≥ q0

νn e−ν

n!

e
−1

2

“

x−ν
∆ν

”2

√
2π ∆ν

. (13)

The x derivative of −2 ln λ(n, x) is strictly negative in the region x < n; one can therefore implicitly
define a function x̃(n, q0) by the equation

−2 ln λ(n, x̃(n, q0)) = q0 for q0 > 0, (14)

which can be solved numerically. The integration region −2 ln λ(n, x) ≥ q0 is equivalent with x ≤
x̃(n, q0), so that the expression for the tail probability simplifies to:

IPr(−2 ln λ(N, X) ≥ q0 |µ = 0, ν) =















+∞
∑

n=1

νn e−ν

n!

1

2

[

1 + erf
(

x̃(n, q0) − ν√
2 ∆ν

)]

if q0 > 0,

1 if q0 = 0.

(15)
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According to equation (7), the dependence of this tail probability on ν is eliminated by taking the supre-
mum with respect to ν.

For ∆ν values of order 1 or larger, a graphical examination of eq. (15) shows that −2 ln λ is
stochastically increasing with ν, so that the supremum (7) equals the limiting p value:

p∞ = lim
ν →+∞

IPr(−2 ln λ(N, X) ≥ q0 |µ = 0, ν). (16)

The distribution of −2 ln λ in the large ν limit is described by asymptotic theory. In the present case, care
must be taken of the fact that the null hypothesis, µ = 0, lies on the boundary of the physical parameter
space, µ ≥ 0. The correct asymptotic result is that, under H0, half a unit of probability is carried by the
singleton {−2 ln λ = 0}, and the other half is distributed as a chisquared with one degree of freedom
over 0 < −2 ln λ < +∞; this distribution is sometimes written as 1

2χ2
0 + 1

2χ2
1. Thus, for q0 > 0, p∞

equals half the tail probability to the right of q0 in a χ2
1 distribution.

For small values of ∆ν, the discreteness of n causes the tail probabilities of −2 ln λ to oscillate
as a function of ν, and their supremum to slightly exceed the asymptotic value. In this case the correct
supremum is much more difficult to find, although p∞ is often a useful approximation.

3.3 Confidence Set Method

The supremum method has two significant drawbacks. The first one is computational, in that it is often
difficult to locate the global maximum of the relevant tail probability over the entire range of the nuisance
parameter ν. Secondly, the very data one is analyzing often contain information about the true value of
ν, so that it makes little sense conceptually to maximize over all values of ν. A simple way around these
drawbacks is to maximize over a 1 − β confidence set Cβ for ν, and then correct the p value for the fact
that β is not zero [7, 8]:

pcset = sup
ν∈Cβ

p(ν) + β. (17)

Here the supremum is restricted to all values of ν that lie in the confidence set Cβ . It can be shown that
pcset, like psup, is conservative:

IPr(pcset ≤ α) ≤ α for all α ∈ [0, 1]. (18)

We emphasize that this inequality is only true if β is chosen before looking at the data. Since pcset is
never smaller than β, the latter should be chosen suitably small. If one is using a 5σ discovery threshold
for example (α = 5.7 × 10−7), then it would be reasonable to take a 6σ confidence interval for ν, i.e.
β = 1.97 × 10−9. Constructing an interval of such high confidence level may be difficult however, as
one rarely has reliable knowledge of the relevant distributions so far out in the tails.

3.4 Bootstrap Methods

Conceptually the simplest method for handling the nuisance parameter ν in the p value (4) is to substitute
an estimate for it. This is known as a parametric bootstrap, or plug-in method. Estimation of ν should
be done under the null hypothesis, to maintain consistency with the general definition of p values. For
example, in the case where information about ν comes from an auxiliary Gaussian measurement, one
should use the ˆ̂ν estimate of equation (10). The plug-in p value is thus:

pplug =
+∞
∑

n=n0

ˆ̂ν(n0, x0)
n

n!
e−

ˆ̂ν(n0,x0). (19)

Two criticisms can be levelled at this method. First, it makes double use of the data, once to estimate
the nuisance parameter under H0, and then again to calculate the tail probability. This tends to favor H0.
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Second, it does not take into account the uncertainty on the parameter estimate. This tends to exaggerate
the significance and hence works against H0. There are several ways for correcting these deficiencies.

One option is to base the plug-in estimate of ν on the auxiliary measurement x0 only, in order
to avoid potential signal contamination from the observation n0. This is equivalent to extracting the
estimate of ν from the conditional distribution of the data given the test statistic n0, and the resulting p
value is therefore referred to as a conditional plug-in p value. Although this method avoids double use of
the data, it still ignores the uncertainty on the estimate of ν, which can lead to significant undercoverage.

A better way is to adjust the plug-in p value by the following procedure. Let Fplug(pplug | ν) be
the cumulative distribution function of pplug. It depends on the nuisance parameter ν, whose value we
don’t know. However, we can estimate it, and substitute that estimate in Fplug. This yields the so-called
adjusted plug-in p value:

pplug,adj = Fplug(pplug | ˆ̂ν). (20)

This adjustment algorithm is known as a double parametric bootstrap and can be implemented by a Monte
Carlo calculation [9]. Since double bootstrap calculations tend to require large amounts of computing
resources, methods have been developed to speed them up [10, 11, 12].

Another way to correct the plug-in p value is to work with a different test statistic. Ideally one
would like to use a test statistic that is pivotal, i.e. whose distribution under the null hypothesis does not
depend on any unknown parameters. Often this is not possible, but an asymptotically pivotal statistic
can be found; this is then still better than a non-pivotal statistic. The test statistic used above for pplug,
namely n, is clearly not pivotal, not even asymptotically. However, twice the negative log-likelihood
ratio, equation (12), is asymptotically pivotal, having a 1

2χ2
0 + 1

2χ2
1 distribution in the large-sample limit.

The parametric bootstrap evaluation of the likelihood ratio p value consists in substituting ˆ̂ν for ν in
equation (15). We will write pplug,λ for this plug-in p value, to distinguish it from the one based on n. In
finite samples, pplug,λ is usually more accurate than the asymptotic p value p∞ (eq. 16).

Figure 1 compares the relative coverage error, R ≡ (α−IPr(p ≤ α))/α, of pplug, pplug,adj , pplug,λ,
and p∞ for our Poisson benchmark problem with a Gaussian uncertainty ∆ν on ν. Positive values of R
indicate overcoverage, negative ones undercoverage. Exactly uniform p values have R = 0. In terms of
uniformity, pplug,λ performs best, followed by pplug,adj , p∞, and pplug, in that order. The first two exhibit
some minor undercoverage, which varies with the value of ∆ν.

An interesting alternative to the bootstrap, known as Bartlett adjustment, can be applied to any
log-likelihood ratio statistic T whose asymptotic distribution under the null hypothesis is chisquared
with k degrees of freedom. In finite samples one assumes that T is distributed as a scaled chisquared
variate with expectation value 〈T 〉 = k (1 + B), where B goes to zero with increasing sample size. An
estimate of B can be extracted from a Monte Carlo calculation of 〈T 〉, in which unknown parameters
are replaced by their maximum likelihood estimates under H0. For continuous data it turns out that the
Bartlett-adjusted statistic T/(1 + B) is a better approximation than T to a chisquared statistic with k
degrees of freedom. For discrete data the improvement is less consistent.

3.5 Prior-predictive Method

The last two nuisance parameter elimination methods we examine are inspired by a Bayesian approach
to model selection. It is assumed that information about the nuisance parameter ν is available in the form
of a prior distribution π(ν). The prior-predictive method consists in averaging the p value p(ν) over this
prior:

pprior =

∫

dν π(ν) p(ν). (21)
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Fig. 1: Relative coverage error, R ≡ (α− IPr(p ≤ α))/α versus significance threshold α, for pplug (short dashes),
pplug,adj (long dashes), pplug,λ (solid), and p∞ (dot-dashes). The dotted lines represent zero relative error. The
values of ν and ∆ν used to generate the reference ensemble are indicated in the lower-left corner of each plot. R

values for pplug,adj and pplug,λ are almost indistinguishable for ∆ν = 0.1 and 0.47.

Substituting expression (4) from our benchmark example into the above integral, and interchanging the
order of integration and summation, yields:

pprior =
+∞
∑

n=n0

mprior(n), where mprior(n) =

∫

dν π(ν)
νn e−ν

n!
, (22)

showing that pprior is itself the tail probability of a distribution, namely the prior-predictive distribution
mprior(n) [13]. The latter characterizes the ensemble of all experimental results that one could obtain,
taking into account prior uncertainties about the model parameters. A small value of pprior is therefore
evidence against the overall model used to describe the data, and could in principle be caused by a badly
elicited prior as well as by an invalid likelihood (or unlikely data).

Despite its Bayesian motivation, the prior-predictive p value can be used to analyze frequentist
problems. If prior information about ν comes from a bona fide auxiliary measurement with likelihood
Laux(ν |x0), the prior π(ν) can be derived as the posterior for that measurement:

π(ν) ≡ πaux(ν |x0) =
Laux(ν |x0) πaux(ν)

∫

dν Laux(ν |x0) πaux(ν)
, (23)

where the auxiliary measurement prior πaux(ν) is in some sense noninformative or neutral. For example,
the testing problem discussed in section 3.2 can be analyzed this way, with Laux(ν |x0) a Gaussian
likelihood. Choosing a flat prior for πaux(ν), truncated to positive values of ν, leads to:

π(ν) =
e
− 1

2

“

ν−x0

∆ν

”2

√
2π ∆ν 1

2

[

1 + erf
(

x0√
2 ∆ν

)] . (24)
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Inserting this prior and the Poisson p value (4) in equation (21) yields, after some simple algebra:

pprior =



















∫ +∞

0
du

1 + erf
(

x0−u√
2∆ν

)

1 + erf
(

x0√
2∆ν

)

un0−1 e−u

(n0−1)!
if n0 > 0,

1 if n0 = 0.

(25)

In this type of application it is interesting to study the characteristics of pprior with respect to a purely
frequentist ensemble, in which both n0 and x0 fluctuate according to their uncertainties. This is to be
contrasted with the prior-predictive ensemble, where n0 and ν fluctuate, and with respect to which pprior

is exactly uniform by construction. Figure 2 shows the behaviour of the prior-predictive p value (25)
with respect to the frequentist ensemble. It appears to be everywhere conservative.

3.6 Posterior-predictive Method

The prior-predictive p value is undefined when π(ν) is improper. A possible way to overcome this
problem is to average the p value over the posterior π(ν |n0) instead of the prior π(ν) [14]:

ppost =

∫

dν π(ν |n0) p(ν), with π(ν |n0) ≡
L(ν |n0) π(ν)

mprior(n0)
. (26)

This posterior-predictive p value is also a tail probability, as can be seen by the same manipulations that
led from eq. (21) to eq. (22) in analyzing our Poisson benchmark problem:

ppost =
+∞
∑

n=n0

mpost(n), where mpost(n) =

∫

dν π(ν |n0)
νn e−ν

n!
. (27)

The posterior-predictive distribution mpost(n) is the predicted distribution of n after having observed
n0. Therefore, ppost estimates the probability that a future observation will be at least as extreme as the
current observation if the null hypothesis is true.

The posterior-predictive p value uses the data n0 twice, first to calculate mpost and then again when
evaluating ppost. As was the case for pplug, this makes ppost conservative, increasing the risk of accepting
a bad model. The behaviour of ppost with respect to the frequentist ensemble for our benchmark problem
is compared to that of pprior in Fig. 2. Note that for small values of ∆ν, inferences about ν are dominated
by the prior (24), so that pprior and ppost become indistinguishable.

An advantage of ppost over pprior is that the former can be used to calibrate discrepancy variables
in addition to test statistics. In contrast with statistics, discrepancy variables depend on both data and pa-
rameters. A typical example is a sum D(~x, ~θ) of squared residuals between data ~x and model predictions
that depend on unknown parameters ~θ. Whereas a frequentist approach consists in minimizing D(~x, ~θ)
with respect to ~θ, the posterior-predictive approach integrates the joint distribution of ~x and ~θ, given the
observed value ~x0 of ~x, over all values of ~x and ~θ that satisfy D(~x, ~θ) ≥ D(~x0, ~θ) [14].

In spite of its advantages, the extreme conservativeness of ppost remains troubling and has led
some statisticians to propose a recalibration [15] or modified constructions [16].

4 Nuisance parameters that are present only under the alternative

Even though p values are designed to test a single hypothesis (the “null”), they often depend on the
general type of alternative envisioned. The benchmark example of section 3 illustrates this, since only
positive excursions of the background level are of interest, and negative excursions, no matter how large,
are never considered part of the alternative. This clearly affects the calculation of the p value, which
depends on one’s definition of “more extreme than the observation”. As another example, consider
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Fig. 2: Relative coverage error (α − IPr(p ≤ α))/α versus significance threshold α, for prior-predictive p values
(solid lines) and posterior-predictive p values (dashes). At ∆ν = 0.1 the two curves are indistinguishable. The
dotted lines represent zero relative error.

a positive finding from a search for a signal peak or trough on top of a one-dimensional background
spectrum. In this case the alternative hypothesis includes excursions from the background level at any
location on the spectrum, not just where the observation was made. The significance of the latter will be
degraded due to what physicists call the look-elsewhere effect. Statisticians on the other hand, blame the
location parameter of the signal, which they characterize as “a nuisance parameter that is present under
the alternative but not under the null” [17, 18]. Since the nuisance parameter is not present under the
null, none of the methods described in section 3 can be applied here, and a separate treatment is needed.

As usual, the first step towards a solution consists in choosing an appropriate test statistic. If
the signal location θ is known beforehand, the optimal test statistic is simply the likelihood ratio λ.
Otherwise λ is a function of θ, and Ref. [19] discusses several ways to eliminate this dependence:

SupLR ≡ sup
L≤θ≤U

[−2 ln λ(θ)], (28a)

AveLR ≡
∫ U

L

dθ w(θ) [−2 ln λ(θ)], (28b)

ExpLR ≡
∫ U

L

dθ w(θ) exp

[

1

2
[−2 ln λ(θ)]

]

, (28c)

where L and U are the spectrum boundaries and w(θ) is a weight function. These are two-sided statistics;
one-sided versions also exist and do not add any particular difficulty. If there is no prior information about
the location of the signal (w(θ) uniform between L and U ), then SupLR and ExpLR appear to be equally
good choices, whereas AveLR is significantly less powerful. Note that SupLR is the likelihood ratio
statistic when θ is unknown. However, because θ is unidentified under H0, SupLR does not have the
usual asymptotic null distribution, nor does it enjoy the usual asymptotic optimality properties [19].

In general, the null distribution of the selected test statistic has to be obtained by a Monte Carlo
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simulation, or a parametric bootstrap if there are unknown parameters under the null. This is often a
very complex calculation, in which each simulated dataset must undergo many fits, one under the null
hypothesis and several under the alternative, in order to obtain the likelihood ratio as a function of θ.
Such a procedure is not easy to automate over the millions of simulated datasets required to prove a 5σ
effect, the standard of discovery in high-energy physics.

This computational burden may be somewhat alleviated by using asymptotic approximations when
the sample size allows it. For simplicity we illustrate this technique in the case of a binned spectrum with
N bins. Background and signal shapes can then be represented by N -vectors whose components are
expected bin contents. Suppose that the background spectrum is a linear combination of k independent
N -vectors ~bi, whose coefficients are unknown parameters, and that the signal shape is described by N -
vector ~s(θ). We can introduce a metric in the space of N -vectors by defining 〈~a |~b〉 ≡

∑N
i=1 aibi/σ

2
i ,

where ai, bi are components of the N -vectors ~a and ~b, and σi is the standard deviation of bin i under the
null hypothesis. Let ~v(θ) be that linear combination of the ~bi and ~s(θ) that is orthogonal to each ~bi and
normalized to 1. It can be shown that, asymptotically:

−2 ln λ(θ) ∼
[

N
∑

i=1

vi(θ)

σi
Zi

]2

, (29)

where the Zi are independent standard normal random variables, and the symbol ’∼’ stands for equality
in distribution. For known θ, eq. (29) reduces to −2 ln λ(θ) ∼ χ2

1, as expected. For unknown θ, it
properly accounts for correlations between values of −2 ln λ(θ) at different θ locations, an essential
requirement for correctly evaluating the statistics (28). That this result simplifies significance calculations
is easy to see, since it gives the likelihood ratio without having to fit a spectrum. The vector ~v(θ) should
be constructed over a fine grid of θ values before starting the simulation. Then, to simulate a dataset, one
generates N normal deviates Zi, computes −2 ln λ(θ), and plugs the result into the desired test statistic,
SupLR, ExpLR, or AveLR.

Reference [20] generalizes equation (29) to unbinned likelihoods and non-regular problems other
than the one discussed here.

5 Summary

General methods for handling nuisance parameters in p value calculations fall in three categories: worst-
case evaluation (supremum or confidence set), bootstrapping, and Bayesian predictive (prior or poste-
rior). The performance of these methods depends strongly on the choice of test statistic, and the likeli-
hood ratio is usually optimal. Of all the methods considered, bootstrapping the likelihood ratio seems
the most successful at preserving the uniformity of p values with respect to frequentist ensembles.

Significance problems in high energy physics typically involve many nuisance parameters, not all
of which can be handled in the same way. Our understanding of detector energy scales for example,
is usually far too complex to be modelled by a likelihood function. A sensible solution is to construct
a prior representing this understanding, and assume a prior-predictive approach to incorporate it into
a significance. This suggests a hybrid treatment of systematics, where the main effects are handled
by bootstrapping a likelihood ratio, whereas auxiliary effects are accounted for with a supremum or
predictive method. Such a treatment is well suited to the Monte Carlo approach often necessitated by the
complexity of physics analyses.
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