
Interval Estimation

Luc Demortier

Laboratory of Experimental High Energy Physics
The Rockefeller University, New York, NY 10065, USA

Monday 10th June, 2013

Abstract

This is a review of interval construction methods, both frequentist and Bayesian.
The frequentist side covers Neyman’s construction, test inversion, pivoting, asymptotic
approximations, the bootstrap, and various techniques for handling nuisance param-
eters. On the Bayesian side the discussion includes highest posterior density regions,
equal-tailed intervals, upper and lower limits, likelihood regions, and lowest posterior
loss regions. Many examples are given to illustrate the concepts. The review ends with
a discussion of the role of intervals in search procedures in high energy physics.

1 Introduction

Point estimation procedures provide very concise summaries of what the data have to say
about a given parameter of interest: Each summary consists of a single number, representing
what is in some sense the most likely value of the parameter, given the observed data. The
downside of this conciseness is that it does not come with a characterisation of the reliability
of the estimate. This is what interval estimates attempt to remedy: Instead of a single
numerical estimate, two numerical limits are provided, plus a level of confidence about the
true value of the parameter of interest lying between these limits. If there is more than one
parameter of interest, intervals are replaced by multi-dimensional regions. It is also possible
for an interval construction method to yield a union of disjoint intervals or regions, and this
may be sensible in some contexts (see example 4 below).

Not surprisingly, the correct interpretation of the confidence level of an interval or region
depends strongly on the statistical paradigm one is operating in, Bayesian or frequentist. Fur-
thermore, specification of a desired confidence level does not uniquely determine an interval
construction. Other desiderata enter into play, for example interval length, behaviour under
reparameterisation, effect of physical boundaries, systematic uncertainties, etc. After briefly
reviewing such interval characterisations in section 2, we describe frequentist constructions
in section 3 and Bayesian ones in section 4. Following the two sections on methodology, a
graphical comparison using a problem involving a physical boundary is provided in section 5.
Next, the role of interval construction in search procedures is addressed in section 6, in par-
ticular in relation to the issues of coverage and measurement sensitivity. A short summary
of the chapter is given in section 7.
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2 Characterisation of interval constructions

Confidence level is the primary characteristic of an interval construction, but its meaning is
radically different in the Bayesian and frequentist approaches to statistical inference. In the
Bayesian approach, the final result of a measurement is the posterior distribution of the pa-
rameter of interest, and interval estimation is one method among others for summarising the
information contained in this distribution. The confidence level associated with a Bayesian
interval is the integral of the posterior over that interval and is also called credibility. It
represents the probability for the parameter of interest to lie somewhere inside the interval,
given one’s prior beliefs and the observed data.

On the other hand, the frequentist approach does not associate probability distributions
with constants of nature and therefore requires a different concept to quantify the reliability
of interval estimates. This is the concept of coverage, which characterises how an interval
construction procedure behaves over large numbers of replications of the measurement under
consideration. Coverage answers the question: “If N new data sets are collected under the
same conditions as the actually observed one, and the same measurement is performed each
time, what fraction of these measurements will yield a confidence interval that contains the
true value of the parameter of interest, as N → ∞?” It should be noted that a desired
coverage cannot always be achieved exactly, for example when the observable is discrete
(e.g. a number of events), or when systematic uncertainties are present.

Even though the credibility and coverage interpretations of a confidence level belong to
different statistical paradigms, it is often instructive to investigate the credibility of frequen-
tist intervals and the coverage of Bayesian intervals. This is because Bayesian inferences
fully condition on the observed data, whereas frequentist ones take both observed and un-
observed data into account. Thus one could question the relevance of a frequentist result
for the data at hand, and this can be clarified by studying its posterior credibility with a
well-motivated, proper Bayesian prior. Similarly, one could question the replicability of a
Bayesian result, and this can be investigated with a well-defined ensemble of measurements
(real or simulated). An interesting result in this regard is that when a proper prior is used,
the prior-averaged coverage of a Bayesian interval construction equals its nominal credibility,
thus guaranteeing replicability in some average sense. When a proper, evidence-based prior
is not available, coverage may still provide useful guidance in choosing a so-called objective
prior [KW96].

As already indicated, the desired confidence level of an interval estimate does not uniquely
specify how to construct such an estimate. There are many possibilities, and for choosing
among them it is useful to examine other interesting properties:

• Interval length: For a given confidence level, short intervals are more informative than
long ones, at least when they cover the true value of the parameter. A frequentist
concept that may be useful in this regard is that of expected length, which is the interval
length averaged over the ensemble of all possible observations and viewed as a function
of the parameter of interest. It can be shown that the expected length of a confidence
interval is equal to the probability of including a false value of the parameter in the
interval, integrated over all false values [Pra61]. Since the expected length involves an
ensemble average, it is not a Bayesian criterion. However, given a Bayesian posterior
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distribution, a popular interval construction is that known as highest posterior density
(HPD), which yields the shortest interval of a given credibility (see section 4).

• Equivariance under parameter transformations: When measuring a quantity such as a
particle mass θ, the result may be used by theorists to draw inferences about another
quantity η = f(θ), where f can be an arbitrarily complicated function. Suppose now
that we apply the same interval construction procedure to both parameters, obtaining
[θ1, θ2] and [η1, η2], respectively. It would be useful to have [η1, η2] = [f(θ1), f(θ2)], but
this is generally not true; For example, the shortest intervals in θ do not necessarily
map onto the shortest intervals in η.

• Behaviour with respect to systematic uncertainties: Systematic uncertainties are mod-
eled with the help of nuisance parameters, that is, parameters that are of no direct
interest to the experimenter but must be known in order to draw inferences about
the parameter of interest. Examples include calibration constants, energy scales, and
detection efficiencies. Nuisance parameters are constrained by auxiliary measurements
or Bayesian priors, which determine the distribution of associated systematic uncer-
tainties. Typically one expects the length of an interval for the parameter of interest
to increase with the width of that distribution.

• Effect of physical boundaries: When the parameter space has boundaries imposed by
physical constraints, some interval constructions may yield intervals that lie partially
or completely in the unphysical region for some subset of observations. The physical
part of these intervals is then either unreasonably narrow or empty, a highly undesir-
able situation. Examples where this may happen are measurements of efficiencies and
acceptances, where the true value is constrained to lie between 0 and 1, and particle
masses, where it must be positive. It is also possible for a parameter boundary to have
special physical significance. In a search for new particles, for example, the production
rate is constrained to positive values. The value zero, however, has special significance
since it corresponds to the background-only hypothesis (no new particles). Whether
interval estimation is the appropriate type of inference in such situations, as opposed
to e.g. hypothesis testing, is an issue that needs to be carefully thought out.

• Relation to point estimate: When measuring a property of a system known to exist
(e.g. the mass of the top quark), one usually reports both an interval and a point
estimate, and it is desirable that the latter be contained in the former. However, in-
tervals and point estimates provide different types of inference and there is no unique
relationship between them. One can try to introduce such a relationship1, but this does
not necessarily yield optimal procedures. On the other hand, there are some natural
associations, as between equal-tailed intervals and medians, and between likelihood-
ratio-ordered intervals and maximum-likelihood estimates, but these associations are
not exclusive. Furthermore, one should not expect an interval to be centered on the

1The Hodges–Lehmann estimator, for example, is defined as the limit of an interval construction as the
confidence level goes to zero [HL63]
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associated point estimate; this depends on the probability distribution of the observa-
tion(s), on the presence of physical boundaries, systematic uncertainties, etc. Finally,
it is sometimes meaningful to report an interval without point estimate, for example
when a new physics process has not been observed and one wishes to provide an upper
limit on its production rate.

• Generality: Is the interval construction procedure general enough that it can be applied
to any problem, regardless of its complexity?

Needless to say, there does not exist a single interval construction method that adequately
addresses all the above characterisations in all the problems encountered in practice. It is
nevertheless useful to keep these characterisations in mind, and perhaps to prioritise them
when searching for an optimal method in a specific situation.

3 Frequentist methods

The basic frequentist interval construction is due to Neyman [Ney37]. This procedure is
very general, can be applied to multi-dimensional problems and also provides a method for
the elimination of nuisance parameters2. We therefore start this section with a discussion of
this construction. Subsequently, sections 3.2 through 3.4 present simpler methods. In less
simple, more realistic situations, bootstrapping methods as described in section 3.5 can be
used. These are particularly well suited to particle physics, where observations (“events”)
are independent and identically distributed. As a matter of fact, parametric bootstrap
methods are already being used by physicists every time they substitute a point estimate for
a parameter in a model in order to generate so-called pseudo-data. It is therefore important
to understand what can be expected from the bootstrap in terms of some of the interval
properties listed in the introduction. We close this discussion of frequentist intervals with
comments on the handling of nuisance parameters, together with a detailed case study, in
section 3.6.

3.1 Neyman’s construction

The Neyman construction is illustrated in figure 1 for the case of estimating a one-dimensional
continuous parameter θ from observations whose distribution depends only on θ. The first
step is to choose a point estimator θ̂ of θ, to make a graph of θ versus θ̂ and to plot the
probability density distribution (pdf) of θ̂ for several values of θ. In figure 1(a) this has been
done for θ = 1, 2, and 3. For each value of θ considered in step 1, step 2 consists in selecting
an interval of θ̂ values that has a fixed integrated probability, for example 68%. Finally, at
step 3 the interval boundaries are connected across θ values to obtain the so-called confidence
belt. Once data are collected, the observed value θ̂obs of the estimator of θ is computed, and
the confidence belt is used to derive the corresponding interval [θ1, θ2] for θ (figure 1(b)).

To see why this procedure works, consider that if θtrue is the true value of θ, there is by
construction a 68% probability for the point (θ̂obs, θtrue) to be inside the confidence belt, and

2 “Eliminating nuisance parameters” is statistics terminology for “incorporating the effect of systematic
uncertainties.”
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Figure 1: (a) Neyman construction of a 68% confidence interval on a parameter θ. (b) Example use
of this construction (see text). Only the part of the construction that falls inside the first quadrant
is shown.

only when this happens will θtrue be inside the interval [θ1, θ2] corresponding to θ̂obs. There is
therefore a 68% chance that the reported interval will contain θtrue, and this holds regardless
of the value of θtrue.

The Neyman construction requires four ingredients: an estimator θ̂ of the parameter of
interest θ, a reference ensemble, an ordering rule, and a confidence level. We now take a
look at each of these ingredients individually.

3.1.1 Ingredient 1: the estimator

The estimator is the quantity plotted along the abscissa in the Neyman construction plot.
Suppose for example that we collect n independent measurements xi of the mean θ of a
Gaussian distribution with known standard deviation. Then clearly we should use the av-
erage x̄ of the xi as an estimate of θ, since x̄ is a sufficient statistic3 for θ. On the other
hand, if θ is constrained to be positive, then it might make more sense to use θ̂ = max{0, x̄}
instead of θ̂ = x̄. These two estimators lead to intervals with very different properties. We
will come back to this example in section 5.

It should be pointed out that the original formulation of Neyman’s construction does not
require a choice of point estimator. It proceeds directly from the distribution of the full data
sample at each parameter value. Thus, if the sample contains n measurements, step 2 of
the construction consists in delimiting an n-dimensional region of sample space with total
integrated probability equal to the desired confidence level. This is clearly a non-trivial
operation. Fortunately, in the vast majority of practical cases the reduction of the observed

3A statistic T (X) is sufficient for θ if the conditional distribution of the sample X given the value of
T (X) does not depend on θ. In a sense, T (X) captures all the information about θ contained in the sample.
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sample to a point estimate is a simplifying step that captures all the relevant information.

3.1.2 Ingredient 2: the reference ensemble

This refers to the probability distribution of the point estimator under replication of the
measurement. In order to specify these replications, one must decide which random and
non-random aspects of the measurement are relevant to the inference of interest. We give
two examples to illustrate this point.

Example 1 (Efficiency estimation) First consider the measurement of an efficiency ε.
A useful point estimator of ε is the ratio ε̂ ≡ k/n of the number k of events of interest
(“successes”) over the total number n of events collected. However, the distribution of this
estimator depends on how the data were collected. If we took data until our total sample
reached a certain size, then k will follow a binomial distribution. If we took data until we
found a pre-specified number of events of interest, then the total number of events collected
will have a negative binomial distribution. These two data collection schemes differ by their
stopping rule, a non-random aspect of the measurement that affects inferences about ε. Note
that these schemes also imply very different prior opinions about ε: In the binomial case one
leaves open the possibility that ε could be zero, whereas in the negative binomial case ε is a
priori believed to be non-zero. �

Example 2 (Mass of a short-lived particle) For an example where a random aspect of
the observation affects inferences, consider the measurement of the mass of a short-lived
particle whose decay mode determines the measurement resolution. We only have one obser-
vation of the particle. Should we then refer our measurement to an ensemble that includes
all possible decay modes, or only the decay mode actually observed? For simplicity assume
that the estimator θ̂ of the mass follows a Gaussian distribution with mean θ and standard
deviation σ, and that there is a probability ph that the particle decays hadronically, in which
case σ ≡ σh; otherwise the particle decays leptonically and σ ≡ σ` < σh. Thus if we decide
to condition on the observed decay mode, the distribution of θ̂ is Gaussian with mean θ and
width σh or σ`. If we don’t condition, the distribution of θ̂ is a mixture of two Gaussians:

fθ(θ̂) = ph
e
−1

2

(
θ̂−θ
σh

)2
√

2π σh
+ (1− ph)

e
−1

2

(
θ̂−θ
σ`

)2
√

2π σ`
. (1)

By ignoring the decay-mode information we can actually expect a more precise measurement.
Indeed, if we report our measurement in the form θ̂± δ, then δ equals σh for hadronic decays
and σ` for leptonic decays. When the decay mode is ignored, δ is the solution of∫ θ+δ

θ−δ
fθ(θ̂) dθ̂ = ph erf

(
δ√
2σh

)
+ (1− ph) erf

(
δ√
2σ`

)
= 0.68 . (2)

For a numerical example, take ph = 0.5, σh = 10 and σ` = 1 (in arbitrary units). The
expected interval length with known decay mode is then 2[phσh + (1 − ph)σ`] = 11.0.
When the decay mode is ignored, the expected interval length is 2δ ≈ 9.50, noticeably
smaller. To understand this feature, imagine repeating the measurement a large number
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of times. In the conditional analysis the coverage of the interval is 68% both within the
subensemble of hadronic decays and within the subensemble of leptonic decays. On the
other hand, in the unconditional analysis the coverage is erf(δ/(

√
2σh)) ≈ 36% for hadronic

decays and erf(δ/(
√

2σ`)) ≈ 100% for leptonic decays, correctly averaging to 68% over all
decays combined. Qualitatively, by shifting some coverage probability from the hadronic
decays to the higher-precision leptonic ones, the unconditional construction is able to reduce
the expected interval length.

The above problem is an adaptation to high-energy physics of a famous example in the
statistics literature [Cox58; Bon88], used to discuss the merits of conditioning versus power
(or interval length). In spite of the loss of expected precision, most physicists would agree
to condition on the observed decay mode. �

3.1.3 Ingredient 3: the ordering rule

The ordering rule is the rule we use to decide which θ̂ values to include in the interval at
step 2 of the construction. The only constraint on that interval is that it must contain 68%
of the θ̂ distribution (or whatever confidence level is desired for the overall construction).
For example, we could start with the θ̂ value that has the largest probability density and
then keep adding values with lower and lower probability density until we cover 68% of the
distribution. Another possibility is to start with θ̂ = −∞ and add increasing values of θ̂,
again until we reach 68%. Of course, in order to obtain a smooth confidence belt at the
end, we should choose the ordering rule consistently from one θ value to the next. This is
what endows the resulting intervals with their inferential meaning: an ordering rule is a rule
that orders parameter values according to their perceived compatibility with the observed
data. Below we list the most common ordering rules, all assuming that we are interested in
an (1 − α)-level confidence set C1−α for a parameter θ. We use a point estimator θ̂ whose
observed value in the data at hand is θ̂obs; the cumulative distribution of θ̂ is Fθ(θ̂) and its
density is fθ(θ̂).

• Lower-limit ordering: C1−α = {θ : Fθ(θ̂obs) ≤ 1− α}
C1−α is the set of θ values for which θ̂obs is smaller than or equal to the 100(1 − α)th

percentile of Fθ. If, as is usually the case, θ̂ is stochastically increasing with θ4, then
the parameter value θlow with Fθlow(θ̂obs) = 1− α is the lower limit of C1−α.

• Upper-limit ordering: C1−α = {θ : Fθ(θ̂obs) ≥ α}
C1−α is the set of θ values for which θ̂obs is larger than or equal to the 100αth percentile
of Fθ. The parameter value θup with Fθup(θ̂obs) = α is the upper limit of the set C1−α.

• Equal-tails ordering: C1−α = {θ : α
2
≤ Fθ(θ̂obs) ≤ 1− α

2
}

C1−α is the set of θ values for which θ̂obs falls between the 100(α
2
)th and 100(1 − α

2
)th

percentiles of Fθ. The previous definitions of lower and upper limits show that equal-
tailed intervals must have the form C1−α = [θ1, θ2], where the boundaries are themselves
confidence limits: ]−∞, θ1] and [θ2,+∞[ are both (α

2
) CL intervals. Furthermore, θ1

4The random variable θ̂ is said to be stochastically increasing with the parameter θ if θ1 < θ2 implies
Fθ1(θ̂) > Fθ2(θ̂). In words, the bulk of the distribution of θ̂ tracks changes in θ.



8 3 FREQUENTIST METHODS

and θ2 can be solved from Fθ1(θ̂obs) = 1−α
2

and Fθ2(θ̂obs) = α
2
. The relationship between

equal-tailed intervals and confidence limits leads to the following interpretation of the
former in terms of “plausibility” [ET93, p. 157]: Values of θ smaller than θ1 are
implausible because they result in probability less than α/2 of obtaining a θ̂ value at
least as large as observed, and values of θ larger than θ2 are implausible because they
result in probability less than α/2 of obtaining a θ̂ value at least as small as observed.

• Probability-density ordering: C1−α = {θ : fθ(θ̂obs) ≥ k1−α(θ)}
C1−α is the set of θ values for which θ̂obs falls within the 100(1 − α)% most probable
region of fθ. The cutoff k1−α(θ) is determined by the coverage requirement, namely
that

∫
C1−α

fθ(θ̂) dθ̂ = 1 − α; this requirement can introduce a θ dependence in k1−α,

but no θ̂ dependence.

• Likelihood-ratio ordering: C1−α = {θ : fθ(θ̂obs)/[maxθ′ fθ′(θ̂obs)] ≥ k′1−α(θ)}
C1−α is the set of θ values for which θ̂obs falls in the region of sampling probability
1 − α where the likelihood ratio in favour of θ is larger than anywhere outside the
region (k′1−α(θ) is fixed by the coverage requirement). Note that the maximisation in
the denominator of the likelihood ratio must be restricted to the physical region of
θ-space [FC98].

In contrast with the equal-tails, upper-limit, and lower-limit ordering rules, the probability-
density and likelihood-ratio rules do not always produce simple intervals: In complex prob-
lems they may yield confidence sets that are unions of disjoint intervals.

Table 1 summarises these ordering rules together with their defining equations, and shows
the result of applying them to a measurement of the lifetime θ of an exponential decay. In
this case the probability density of the estimated lifetime θ̂ is fθ(θ̂) = exp(−θ̂/θ)/θ, and the
cumulative distribution is Fθ(θ̂) = 1− exp(−θ̂/θ).

θ
∧

θ

θ
∧

θ

θ
∧

θ

Figure 2: Confidence belts for an exponential lifetime, with 1−α = 68% and three different ordering
rules: (a) equal-tailed; (b) probability density; (c) likelihood ratio.

It is interesting to note that the boundaries of the exponential intervals increase linearly
with the observation θ̂obs. Since θ̂ is an unbiased estimator of θ, the expected lengths of these
intervals are trivial to obtain: For 1 − α = 68% they are 5.19 θ, 2.59 θ, and 3.29 θ for the
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Table 1: Common ordering rules used in constructing frequentist intervals with confidence level
1 − α. The first two columns give the name and defining equation for each rule, the third column
shows the solution of the defining equation for the measurement of the lifetime θ of an exponential
decay, and the last column applies the solution to the case 1 − α = 68%. The quantity 1 − α′ at
the bottom of the third column is the unique number between 0 and α that satisfies the equation
(1− α′ + 1− α) ln(1− α′ + 1− α) = (1− α′) ln(1− α′). For 1− α = 0.68, 1− α′ ≈ 0.0829. For the
exponential-decay example, k1−α(θ) = α/θ and k′1−α(θ) = −e (1− α′) ln(1− α′).

Exponential decay example
Ordering rule Defining equation General solution Case 1− α = 68%

Lower limit: Fθlow(θ̂obs) = 1− α θlow = −θ̂obs
lnα

[0.88 θ̂obs, +∞[

Upper limit: Fθup(θ̂obs) = α θup = −θ̂obs
ln(1−α)

[0, 2.59 θ̂obs]

Equal tails:

Fθ1(θ̂obs) = 1− α
2

Fθ2(θ̂obs) = α
2


θ1 = −θ̂obs

ln
(
α
2

)
θ2 = −θ̂obs

ln
(

1−α
2

) [0.55 θ̂obs, 5.74 θ̂obs]

Prob. density: fθ(θ̂obs) ≥ k1−α(θ) Same as lower limit

Likelihood ratio: fθ(θ̂obs)

maxθ′ fθ′ (θ̂obs)
≥ k′1−α(θ)

θ1 = −θ̂obs
ln(1−α′)

θ2 = −θ̂obs
ln(1−α′+1−α)

[0.40 θ̂obs, 3.70 θ̂obs]

equal-tailed, upper-limit, and likelihood-ratio intervals, respectively. Some confidence belts
for this measurement are plotted in figure 2.

3.1.4 Ingredient 4: the confidence level

The confidence level labels a family of intervals; some conventional values are 68%, 90%, and
95%. It is very important to understand that a confidence level does not characterise single
intervals; it only characterises families of intervals. The following example illustrates this.

Example 3 (Mass of a new elementary particle) Suppose we wish to measure the mass
θ of a new elementary particle, and assume for simplicity that our measurement x of this
mass has a Gaussian distribution with unit variance. Thus, even though θ must be posi-
tive for physics reasons, measurement resolution effects can cause x to be negative. Before
performing our measurement we decide that we will report a 68% CL likelihood-ratio or-
dered interval. However, a colleague of ours prefers to report an 84% CL upper limit. The
measurement is then performed and yields x = 0, leading both of us to report the same
numerical interval [0.0, 0.99]! This demonstrates that the same numerical interval can have
two very different coverages (confidence levels), depending on which ensemble it is considered
to belong to. �

In the above example the frequentist coverages of both interval procedures agree exactly
with their respective confidence levels. As mentioned in section 2, this agreement is not
always possible, especially when the observations are discrete or when nuisance parameters
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are present. In general an interval construction is considered valid from the frequentist
point of view if its coverage, as a function of the true value of the parameter of interest, is
everywhere equal to, or larger than, the stated confidence level. If this is not the case one
says that the construction undercovers. One way to verify the coverage characteristics of a
given interval procedure is to plot the interval boundaries as a function of the observation.
This yields a confidence belt, as in figure 1(b). For each value of the parameter θ, integrating
the probability density of the observation between the confidence belt boundaries yields the
coverage at that particular θ value.

3.2 Test inversion

As indicated in the previous subsection, the inferential core of Neyman’s construction is the
ordering rule; the rest is just a geometrical embedding to enforce the coverage constraint.
The ordering rule itself can be viewed as the construction of a test for each physical value of
the parameter; each such test has a different acceptance region in sample space. Therefore,
if we have a proper frequentist test to start with, we can dispense with the rest of Neyman’s
construction and proceed directly to defining the confidence interval as the set of parameter
values for which the acceptance region contains the observation. This is known as the test-
inversion method. To fix the notation, suppose we are interested in a parameter θ ∈ Θ, and
that for each allowed value θ0 of θ we can construct a size α test of

H0 : θ ≡ θ0 versus H1 : θ < θ0 . (3)

Consider then the set C1−α of all the θ0 values for which H0 is accepted. This set depends
on the observations and is therefore random. We have:

P
[
θ0 ∈ C1−α; θ = θ0

]
= P

[
H0 is accepted | H0

]
= 1− α . (4)

Hence C1−α is an (1 − α) CL set for θ. To picture the shape of this set, note that if H0 is
rejected for a given θ0, then, because of the form of H1, all values of θ larger than θ0 will
also be rejected. Therefore the set C1−α of accepted θ values will have an upper boundary
θup. For the simple example of a Gaussian data point x with mean θ and known standard
deviation σ, one can test equation (3) with the statistic y ≡ θ0 − x. Under H0 this statistic
has a Gaussian distribution with mean zero and standard deviation σ, and large observed
values yobs of y constitute evidence against H0 in the direction of H1. The p-value of test (3)
is therefore

p(θ0) =

∫ ∞
yobs

e−
1
2( yσ )

2

√
2π σ

dy =
1

2

[
1− erf

( yobs√
2σ

)]
=

1

2

[
1− erf

(θ0 − xobs√
2σ

)]
. (5)

Values of θ for which p(θ) ≥ α are accepted by the test and included in the confidence
interval. The upper limit of the interval is the solution of p(θup) = α, which is θup =
xobs + z1−α σ, where z1−α ≡

√
2 erf−1(1− 2α) is the (1− α)-quantile of the standard normal

distribution (a Gaussian with zero mean and unit standard deviation).
If one is interested in an (1− α) CL lower limit θlow on θ, the test to consider is

H0 : θ ≡ θ0 versus H ′1 : θ > θ0 , (6)
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again with size α. For the Gaussian example the result is θlow = xobs − z1−α σ.

An (1 − α) CL two-sided interval for θ can be obtained by computing lower and upper
limits at the (1− α

2
) CL, or by inverting a size α two-sided test:

H0 : θ ≡ θ0 versus H ′′1 : θ 6= θ0 . (7)

In this case, an appropriate test statistic for the Gaussian example is y = |x− θ0|, which has
a folded Gaussian distribution. By solving the appropriate p-value equation as before, one
obtains the [θlow; θup] with θlow = xobs − z1−α

2
σ and θup = xobs + z1−α

2
σ.

It should be clear from the above discussion that the construction of confidence intervals
by this method requires the inversion of a family of tests rather than of a single test. Thus
the method will not work if one has a nice test for a special value of the parameter of interest,
but the test does not generalise to other values. It may also happen that inversion of a family
of tests results in a union of disjoint intervals rather than a single interval. In general one
can expect the properties of a family of tests to be reflected in the properties of the resulting
intervals: Conservative tests lead to wide intervals, and powerful tests to narrow intervals.

3.3 Pivoting

A pivot is a functionQ(θ,x) of both the observation x and the parameter θ whose distribution
does not depend on any unknown parameters (not even on θ). Because of this special
property, it is in principle possible to find, for any α ∈ [0, 1], constants a(α) and b(α) such
that P [a(α) ≤ Q(θ,x) ≤ b(α)] = 1 − α for all θ. Therefore, the set of observations X such
that a(α) ≤ Q(θ,x) ≤ b(α) can be interpreted as the acceptance region of a size α test of
the hypothesis that θ is the true value. Since this acceptance region is by construction valid
for testing any θ, inverting the test leads to an (1 − α) CL set for θ. This is the pivoting
method for constructing confidence sets. In general there is no guarantee that such sets
will be simple intervals, or that they will be optimal in any sense, but the simplicity of the
construction makes it worth trying in situations that allow it. Furthermore, the concept of
pivot is crucial to the development of the frequentist theory of confidence intervals beyond
the setting where exact solutions can be found. This will become clear in section 3.4 on
asymptotic approximations and section 3.5 on the bootstrap.

3.3.1 Gaussian means and standard deviations

To illustrate the pivoting method, consider the example of n measurements xi from a Gaus-
sian distribution with mean θ and standard deviation σ. This example has a particularly
rich pivot structure. Suppose first that θ is unknown and σ known. In this case the quantity

Q1(θ,x) ≡ x̄− θ
σ/
√
n
, where x̄ ≡ 1

n

n∑
i=1

xi , (8)
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has a standard normal distribution and is therefore a pivot. Thus, writing zγ for the corre-
sponding γ-quantile, we have:

1− α = P
[
zα

2
≤ Q1(θ,x) ≤ z1−α

2

∣∣∣ θ, σ], (9)

= P
[
zα

2
≤ x̄− θ
σ/
√
n
≤ z1−α

2

∣∣∣ θ, σ], (10)

= P
[
x̄− z1−α

2

σ√
n
≤ θ ≤ x̄− zα

2

σ√
n

∣∣∣ θ, σ], (11)

= P
[
x̄− z1−α

2

σ√
n
≤ θ ≤ x̄+ z1−α

2

σ√
n

∣∣∣ θ, σ] , (12)

where in the last line we used the symmetry of the unit Gaussian distribution to write
zγ = −z1−γ. This result shows that we have obtained a symmetric confidence interval for θ.
Setting for example 1 − α = 68% yields z1−α

2
= z0.84 = 1, and the confidence interval after

observing x̄ = x̄obs is simply x̄obs ± σ/
√
n.

A pivot is not necessarily unique or optimal. Consider for instance the case where θ is
known and σ unknown. In principle we could use pivot (8) again, this time to construct
confidence intervals for the variance σ2. Solving

zα
2
≤ x̄obs − θ

σ/
√
n
≤ z1−α

2
(13)

for σ2 yields an (1− α) CL lower limit

σ2 ≥ n(x̄obs − θ)2

χ2
1,1−α

, (14)

where χ2
n,1−α is the (1−α)-quantile of a χ2 for n degrees of freedom, and we used the relation

z1−α =
√
χ2

1,1−2α.

We can then take advantage of the fact that the interval between two lower limits, one
at the (1− α

2
) CL and the other at the (α

2
) CL, is itself an (1−α) CL equal-tailed two-sided

interval, to obtain

n(x̄obs − θ)2

χ2
1,1−α

2

≤ σ2 ≤ n(x̄obs − θ)2

χ2
1,α

2

with confidence 1− α . (15)

However, this interval is not optimal because it is based on a rather poor estimator of σ2,
namely n (x̄− θ)2, which has a variance of 2σ4. In contrast, the usual estimator

S2
θ,n ≡

1

n

n∑
i=1

(xi − θ)2 (16)

has variance 2σ4/n. Helpfully, the quantity nS2
θ,n/σ

2 is pivotal with a χ2
n distribution and

can therefore serve to construct intervals for σ. We have:

P
[
χ2
n,α

2
≤

n∑
i=1

(xi − θ
σ

)2

≤ χ2
n,1−α

2

∣∣∣ θ, σ] = 1− α , (17)
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so that ∑n
i=1(xi − θ)2

χ2
n,1−α

2

≤ σ2 ≤
∑n

i=1(xi − θ)2

χ2
n,α

2

with confidence 1− α . (18)

Note that for n = 1 this interval coincides with that given in (15). However, at larger values
of n, the interval (18) has smaller expected length.

Finally, we consider the case where both θ and σ are unknown. If we are interested in
σ2, we can use

S2
n ≡

1

n− 1

n∑
i=1

(xi − x̄)2 (19)

as estimator, and construct intervals based on the fact that

Q2(σ,x) ≡ (n− 1)S2
n/σ

2 (20)

is a pivot following a χ2 distribution function with n− 1 degrees of freedom. If on the other
hand θ is of interest, a new pivot can be constructed by taking the ratio of Q1(θ,x) and√
Q2(σ,x)/(n− 1):

Q3(θ, σ,x) =

√
n(x̄− θ)/σ√
S2
n/σ

2
=

x̄− θ
Sn/
√
n
. (21)

This ratio is distributed as a central t variate5 for n − 1 degrees of freedom. With tn−1,1−α
the (1−α)-quantile of Student’s tn−1 distribution and (x̄obs, sn) the observed value of (x̄, Sn),
the following is a (1− α) CL equal-tailed, symmetric interval for θ:

x̄− sn√
n
tn−1,1−α

2
≤ θ ≤ x̄+

sn√
n
tn−1,1−α

2
. (22)

For 1 − α = 68% one finds t1,1−α
2

= 1.82 and t19,1−α
2

= 1.02. As n becomes large, the tn−1

quantiles converge to the corresponding unit Gaussian quantiles.

3.3.2 Exponential lifetimes

Although the previous subsection is limited to problems involving the Gaussian distribution,
the pivoting method can be applied to many other situations. In fact, a pivot that is often
available is the cumulative distribution of the data (cdf), viewed as a function of the data
and the parameters. For continuous data this pivot is uniformly distributed. We illustrate
this idea with the construction of confidence intervals on the lifetime τ associated with an
exponential decay. The cdf of the measurement t, and hence the pivot, is Q(τ, t) = 1−e−t/τ .
Since this is a uniform pivot, an (1− α) CL interval for τ is given by

α

2
≤ 1− e−t/τ ≤ 1− α

2
(23)

or
t

− ln
(
α
2

) ≤ τ ≤ t

− ln
(

1− α
2

) . (24)

For 1 − α = 68% this yields τ ∈ [0.55t, 5.74t], which is the equal-tailed interval listed in
table 1.

5A variate is a random variable.
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3.3.3 Binomial efficiencies

For discrete data the cdf is no longer an exact pivot, but it can still be used to construct
confidence sets. As an example we consider the measurement of an efficiency ε based on the
observation of x successes out of n trials. The cdf is binomial, but it will be convenient to
express it in terms of a Beta cdf B(x; a, b),

P [K ≤ x; ε, n] =
x∑
k=0

(
n

k

)
εk(1− ε)n−k

=

∫ 1−ε

0

tn−x−1(1− t)x

B(x+ 1, n− x)
dt = B(1− ε;n− x, x+ 1) , (25)

where B(a, b) ≡ Γ(a)Γ(b)/Γ(a + b). The second equality can be derived by integration by
parts. Although the cdf of a binomial variable K is not an exact pivot, it can be made exact
by introducing a random variable U that is uniform on the interval [0, 1[, and considering
the cdf of the sum K +U . This is a continuous cdf and therefore an exact uniform pivot, so
that the following inequalities define an (1− α) CL interval for ε:

α

2
≤ P [K + U ≤ x; ε, n] ≤ 1− α

2
. (26)

Since U is unobserved, solving for ε requires a worst-case analysis, in which the random
variable U is replaced by a constant such that the inequalities in formula (26) hold regardless
of the value of U . For the lower limit this means that U should be replaced by 0:

α

2
≤ P [K + U ≤ x; ε, n] ≤ P [K ≤ x; ε, n] = P

[
Bn−x,x+1 ≤ 1− ε

]
, (27)

where we used equation (25) and Ba,b is a random variable with a Beta(a,b) distribution.
Writing Ba,b,α for the (α)-quantile of this distribution, the above result implies that

1− ε ≥ Bn−x,x+1,α
2
, (28)

which yields the upper limit εup of the desired interval for ε:

ε ≤ 1−Bn−x,x+1,α
2

= Bx+1,n−x,1−α
2
≡ εup . (29)

This expression is undefined for x = n, in which case we set εup = 1. In order to guarantee
the upper inequality in (26), we must replace the unobserved random variable U by the
constant 1. Similar manipulations as above yield the lower limit εlow of the interval:

ε ≥ Bx,n−x+1,α
2
≡ εlow . (30)

For x = 0 we set εlow = 0. The interval [εlow, εup], with endpoints given in equations (29)
and (30), is known as an (1 − α) CL Clopper–Pearson interval for the efficiency ε [CP34].
This interval is easy to code into a computer program, using the incomplete beta func-
tion [Pre+07]. It can also be computed from tables of Snedecor’s F distribution and the
following relationship between Beta and F quantiles:

Ba,b,γ =
[
1 +

b

a
F2b,2a,1−γ

]−1

. (31)
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Because of the worst-case analysis involving the random variable U , Clopper–Pearson in-
tervals are conservative (they overcover). Overcoverage is generally unavoidable in discrete
sample spaces. An in-depth comparison with other constructions can be found in [CHT10].

3.3.4 Poisson means

Another frequent application in physics is the computation of an upper limit on the expected
mean θ of the number of events of a new signal at a collider experiment. The observation is
a number of events n, which is assumed to be Poisson distributed with mean θ + ν, where
ν is a known background contamination. The cdf is again discrete and therefore not an
exact pivot, but we can make it exact by adding a uniform variate U on [0, 1[ to the Poisson
variate N . Thus the set of θ satisfying α ≤ P [N + U ≤ n; θ + ν] is an exact (1 − α) CL
interval. Repeating the worst-case analysis argument of the previous section, we replace U
by the constant 0 to obtain a conservative interval. This is a one-sided interval bounded by
an upper limit, as we now show. First note that

α ≤ P [N ≤ n; θ + ν] =
n∑
k=0

(θ + ν)k e−θ−ν

k!
=

∫ +∞

θ+ν

tn e−t

Γ(n+ 1)
dt , (32)

where the last equality can be proved by integration by parts. After substituting t = z/2
in the integrand on the right, one recognises this as the cdf of a χ2 variate χ2

2(n+1) for

2(n + 1) degrees of freedom. With some rearrangement the above inequality can therefore
be rewritten as

P [χ2
2(n+1) ≤ 2(θ + ν)] ≤ 1− α , (33)

which implies that 2(θ+ ν) is smaller than the (1−α)-quantile of the variate χ2
2(n+1). Hence

the following is an (1− α) CL upper limit on θ:

θ ≤ 1

2
χ2

2(n+1),1−α − ν. (34)

This result was first reported by Garwood in 1936 [Gar36]. For an (1 − α) CL two-sided
interval, similar calculations yield[

1

2
χ2

2n,α
2
− ν, 1

2
χ2

2(n+1),1−α
2
− ν
]
. (35)

For n = 0 the lower limit of the interval is −ν. Some numerical examples of equations (34)
and (35), for ν = 0, are shown in table 2. Also shown there are Feldman–Cousins inter-
vals, which are based on a likelihood-ratio ordering rule [FC98]. A significant advantage
of Feldman–Cousins intervals is that they are never unphysical, regardless of how large the
background contamination ν is. This is not the case for Garwood intervals. The frequentist
coverage of 68% CL Garwood central intervals is plotted in figure 3 (again with ν = 0).
Viewed as a function of the true Poisson mean, the coverage is highly discontinuous due to
the discreteness of the Poisson distribution.
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Table 2: Frequentist interval constructions for the mean of a Poisson distribution when N events
are observed: 95% CL upper limits (column 2), 68% CL equal-tailed intervals (column 3), and 95%-
and 68% CL Feldman–Cousins intervals (columns 4 and 5, from [FC98]).

Garwood Feldman–Cousins
Upper limit Equal-tailed interval

N 95% CL 68% CL 95% CL 68% CL
0 3.00 [0.00, 1.84] [0.00, 3.09] [0.00, 1.29]
1 4.74 [0.17, 3.30] [0.05, 5.14] [0.37, 2.75]
2 6.30 [0.71, 4.64] [0.36, 6.72] [0.74, 4.25]
3 7.75 [1.37, 5.92] [0.82, 8.25] [1.10, 5.30]
4 9.15 [2.09, 7.16] [1.37, 9.76] [2.34, 6.78]
5 10.51 [2.84, 8.38] [1.84, 11.26] [2.75, 7.81]
6 11.84 [3.62, 9.58] [2.21, 12.75] [3.82, 9.28]
7 13.15 [4.43, 10.77] [2.58, 13.81] [4.25, 10.30]
8 14.45 [5.23, 11.95] [2.94, 15.29] [5.30, 11.32]
9 15.71 [6.06, 13.11] [4.36, 16.77] [6.33, 12.79]

10 16.96 [6.89, 14.27] [4.75, 17.82] [6.78, 13.81]

Figure 3: Frequentist coverage of 68% CL Garwood central intervals for the mean of a Poisson
distribution. The coverage is evaluated in increments of 0.1 in the Poisson mean, and the nominal
coverage of the construction is indicated by the solid horizontal line.
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3.4 Asymptotic approximations

In section 3.1.3 we mentioned the likelihood-ratio ordering rule as an option for the construc-
tion of Neyman confidence sets. Given data x, a parameter of interest θ and its maximum-
likelihood estimate (MLE) θ̂ = θ̂(x), this rule includes in the confidence set any θ value that
is not rejected by an α-level test based on the likelihood ratio λ(x; θ) ≡ L(x; θ)/L(x; θ̂). For
large samples it turns out that the confidence level constraint is easy to implement thanks
to Wilks’s theorem [Wil38]. The latter states that, under standard regularity conditions,
−2 lnλ(x; θ) is asymptotically distributed as a χ2 variate for d degrees of freedom, where d
equals the dimensionality of θ (in the terminology of section 3.3, −2 lnλ(x; θ) is an asymp-
totic pivot). This provides a simple way to construct a (1 − α) CL interval, by taking the
set of θ values for which

− 2 lnλ(x; θ) ≤ χ2
d,1−α , (36)

where χ2
d,1−α is the (1−α)-quantile of a χ2 distribution for d degrees of freedom. Thus, if θ is

one-dimensional, use χ2
1,0.68 ≈ 1 for a 68% CL interval, χ2

1,0.95 ≈ 4.00 for a 95% CL interval,
etc.

If nuisance parameters are present, collectively labeled ν, the same result applies provided
the likelihood ratio is defined by

λ(x; θ) ≡ L(x; θ, ˆ̂ν(θ))

L(x; θ̂, ν̂)
, (37)

where ˆ̂ν(θ) is the profile likelihood estimate of ν, that is, its MLE evaluated at a fixed value
of θ, and ν̂ is the global MLE of ν, without constraining to a fixed θ.

For one-dimensional θ it is often helpful to plot a graph of −2 lnλ(x; θ) versus θ, since
this allows the interval to be determined at various confidence levels, and to assess the
“Gaussianity” of the problem, e.g. whether 95% CL intervals have twice the length of 68%
CL intervals. In addition, it may happen that confidence sets obtained by this method consist
of two or more disjoint intervals, in which case a plot is most useful. For a two-dimensional
parameter vector θ one can plot contours of −2 lnλ(x;θ) in the plane of θ values. Then
for example, the contour corresponding to −2 lnλ(x;θ) = χ2

2,0.68 ≈ 2.30 encloses a 68%
confidence region for θ, and for 95% confidence one should use χ2

2,0.95 ≈ 6.18. In high energy
physics these constructions are typically done with the help of the routine Minos in the
minuit program package [JR75]. A general treatment of likelihood asymptotics for high
energy physics can be found in [Cow+11].

3.5 Bootstrapping

The confidence interval constructions we have examined so far all assume that it is possible
to write down explicitly the probability distribution of the data in analytical form, including
its dependence on the parameter of interest and on nuisance parameters. Unfortunately this
is not always the case in high energy physics. A good example is the measurement of the top
quark mass, where the dependence of data distributions on the parameter of interest is buried
deeply in complex Monte Carlo simulations of physics processes and detector responses. The
bootstrap method provides a powerful way to circumvent this difficulty. It is a bridge between
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exact methods, which cannot be used in complex physics analyses, and asymptotic methods,
which lack coverage accuracy in finite samples. There are two ideas at the core of bootstrap
methods [DHY03]: the plug-in principle and resampling. The plug-in principle sounds rather
obvious as it states that in order to estimate a quantity of interest, one should replace the
unknown data cdf F by an estimate F̂ . If nothing is known a priori about F , and all we
have is a data sample x1, x2, . . . , xn, then F can be estimated by the empirical distribution
of the data, which assigns probability 1/n to each data point:

F̂ (x) =
#{xi ≤ x}

n
. (38)

Another possibility is that F has a known functional form that depends on some unknown
parameter ψ, in which case it could be estimated by substituting the maximum-likelihood
estimate (MLE) ψ̂ for ψ.

Suppose now that we are interested in estimating a quantity θ, which could be something
as simple as the mean of a population characteristic or as complex as the mass of the top
quark. The true value of θ is defined as the result of applying the appropriate estimating
procedure to the true distribution, which we write as θ = θ(F ), whereas the plug-in estimate
of θ is obtained by applying the same procedure to the estimated distribution, θ̂ = θ(F̂ ).
For example when θ is a mean and F̂ is an empirical distribution we have:

θ = θ(F ) =

∫
x dF (x) and θ̂ = θ(F̂ ) =

∫
x dF̂ (x) =

1

n

n∑
i=1

xi . (39)

Thus, quantities of interest should be viewed as functionals of distributions, or as outcomes
of procedures or algorithms applied to distributions.

The second core idea of the bootstrap is resampling, whereby difficult analytical cal-
culations are replaced by simulations. Resampling comes in two versions, parametric and
non-parametric. In the parametric version it is assumed that the distribution F of the data
is known up to some parameter ψ. An estimate of ψ, typically the MLE, is then substi-
tuted in the expression for F in order to allow the generation of random data samples. In
non-parametric resampling no assumption is made about the form of F . Instead, the data
x1, . . . , xn themselves are used to approximate statistical fluctuations according to F . This
is done by resampling with replacement from the set {x1, . . . , xn}: for each resample, n data
points are successively selected at random from this set, and each selected data point is
“put back” in the set before selecting the next one. Thus, some of the original data points
will appear more than once in a resampled data set, and some will not appear at all. A
(parametric or non-parametric) resampled data set is often called a bootstrap sample.

There exists a bewildering array of bootstrap methods for computing confidence inter-
vals [CB00]. These methods can be broadly classified in three categories: pivotal, non-
pivotal, and test inversion. Section 3.5.1 discusses the bootstrap-t interval as an example
of pivotal methods, and makes the important point that the best way to improve the the-
oretical coverage accuracy of an interval is to bootstrap a pivot (or an asymptotic pivot).
Unfortunately theoretical coverage accuracy is not everything, and other important consid-
erations lead to the definition of the non-pivotal percentile intervals in section 3.5.2, first
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in a “simple” version and then an improved, “automatic” version that incorporates a test-
inversion technique. Finally, section 3.5.3 describes a calibration procedure that can improve
the coverage accuracy of any confidence interval construction.

3.5.1 The bootstrap-t interval

If we have a data set {x1, . . . , xn} from which we can derive an estimate θ̂ of the parameter
of interest θ, as well as an estimate σ̂ of the standard deviation of θ̂, then we can form an
(1− α) CL standard interval for θ,[

θ̂ − z1−α
2
σ̂, θ̂ − zα

2
σ̂
]
, (40)

where zγ is the γ-quantile of the unit Gaussian distribution. If θ̂ is asymptotically normal,

and the estimators θ̂ and σ̂ are consistent, then the asymptotic coverage of the standard
interval is 1− α. In finite samples the actual coverage,

P
[
θ̂ − z1−α

2
σ̂ ≤ θ ≤ θ̂ − zα

2
σ̂
]

= P

[
zα

2
≤ θ̂ − θ

σ̂
≤ z1−α

2

]
, (41)

typically differs from 1 − α by a term of order n−1, where n is the sample size. The above
expression suggests that one way to reduce this difference would be to correct the zα

2
and

z1−α
2

coefficients by bootstrapping the quantity

t ≡ θ̂ − θ
σ̂

. (42)

The idea is to simulate the distribution of t and replace zα
2

and z1−α
2

by the corresponding
quantiles of this t distribution. Since we do not know the true value of θ, we need to apply the
plug-in principle: replace θ by its estimate θ̂, and θ̂ and σ̂ by their bootstrapped estimates
θ̂? and σ̂? (the ? superscript is a conventional way to indicate a bootstrapped quantity). The
following pseudo-code illustrates the calculation:

1. Obtain θ̂ = θ(F̂ ) and σ̂ = σ(F̂ ) from the original data set {x1, . . . , xn}.
2. For i = 1 to b:

3. Generate {x?i1, . . . , x?in} from F̂ to obtain F̂ ?
i .

4. Compute θ̂?i = θ(F̂ ?
i ) and σ̂?i = σ(F̂ ?

i ).

5. Set t?i =
θ̂?i−θ̂
σ̂?i

.

6. Estimate the bootstrap quantiles t?
[α2 ]

and t?
[1−α2 ]

from the sample of t?i .

The (1− α) CL bootstrap-t interval for θ is then given by[
θ̂ − t?[1−α2 ] σ̂, θ̂ − t

?

[α2 ] σ̂
]
. (43)

The quantiles t?[γ] at step 6 can be estimated by taking t?[γ] = t?(k), where k = γb and t?(k)

is entry number k in the list of sorted bootstrap values t?(1) ≤ t?(2) ≤ · · · ≤ t?(b). If k is not
integer, a linear interpolation can be used:

t?(k) = t?(k′) + (k − k′)
(
t?(k′+1) − t?(k′)

)
, . (44)
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Here k′ is the largest integer smaller than k. An appropriate value for the number of bootstrap
replications b is typically 1000 for confidence interval estimation. Note that, unlike the
standard interval (40), the bootstrap-t interval (43) is not necessarily symmetric around
θ̂. This asymmetry contributes to the better coverage of the bootstrap-t interval, which
typically differs from nominal by a term of order n−2. Although this constitutes a theoretical
improvement with respect to the standard interval, it is important to distinguish theoretical
from numerical accuracy. In particular, if the estimated standard deviation σ̂ in equation (42)
has itself a large variance, the actual numerical accuracy of the interval (43) may not be
much better than that of the standard interval (40). Furthermore, the bootstrap-t interval is
primarily designed to work for location parameters such as the mean or median of a sample;
it does not work well for parameters such as a standard deviation or correlation coefficient.
This is because of the form of the bootstrapped quantity (42), which is a pivot for location
parameters but not for scale parameters or correlations. The bootstrap-t interval shares
a couple of other disadvantages with the standard interval: It does not respect physical
boundaries and is not equivariant under parameter transformations. For all these reasons
we now turn to percentile intervals.

3.5.2 Percentile intervals

The endpoints of the standard interval (40) can be reinterpreted in terms of percentiles of
the distribution of the bootstrap estimates θ̂?i . Indeed, under the conditions of validity of
that interval, the θ̂?i are normal with mean θ̂ and standard deviation σ̂, so that

P
[
θ̂? ≤ θ̂ − z1−α

2
σ̂
]

= P

[
θ̂? − θ̂
σ̂
≤ −z1−α

2

]
= P

[
θ̂? − θ̂
σ̂
≤ zα

2

]
=

α

2
. (45)

This suggests the following definition of an (1− α) CL bootstrap interval for θ:[
θ̂?[α

2
], θ̂

?
[1−α

2
]

]
, (46)

where θ̂?[γ] is the γ-quantile of the distribution of bootstrap estimates θ̂?i . This interval is
known as the simple percentile interval. Its endpoints are quantiles, making it equivariant
under parameter transformations. Thus if θ̂ itself is not distributed according to a Gaussian,
but a transformation to a Gaussian exists, the percentile method will be able to take advan-
tage of this in producing an interval with accurate coverage. Another advantage of simple
percentile intervals is that they respect physical boundaries on the parameter provided the
estimator does so. On the other hand, the construction of this interval is based on the
quantity θ̂, which is generally not a pivot, not even asymptotically. Therefore its coverage
accuracy, outside of the special case just mentioned, is not better than that of the standard
interval, of order n−1.

Several methods have been developed to improve the coverage properties of simple per-
centile intervals [ET93], some of them requiring non-trivial analytical calculations. Here we
focus on one method, known as the automatic percentile bootstrap because it does not require
such calculations [DR95]. Suppose that F (θ̂; θ) is the cumulative distribution of the plug-in
estimate θ̂. Having observed θ̂ = θ̂obs, an exact, (1 − α) CL equal-tailed interval [θ1, θ2] for
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θ can be obtained by solving the equations

F (θ̂obs; θ1) = 1− α

2
and F (θ̂obs; θ2) =

α

2
(47)

(see for example table 1 in section 3.1.3). In the automatic percentile method the solution
to these equations is approximated with a bootstrap simulation. Taking the first equation as
example, one chooses a starting value for θ1, bootstraps the corresponding distribution of θ̂,
computes its (1− α

2
)-quantile and adjusts θ1 until that quantile equals θ̂obs. A good starting

value for θ1 would be the output of the simple percentile algorithm. If the cdf F depends
on nuisance parameters ν, the latter should be replaced by their profile likelihood estimate
ˆ̂ν(θ) when performing the bootstrap (as in section 3.4).

As defined above, the automatic percentile interval is equivariant under reparameterisa-
tion, respects physical boundaries provided θ̂ does and has the same coverage accuracy as
bootstrap-t intervals, i.e. O(n−2).

3.5.3 Bootstrap calibration

The bootstrap can be used to recalibrate approximate interval constructions. In the case of
an upper limit, for example, one first generates a large number of bootstrap samples in order
to estimate the calibration function, which is the actual coverage 1−αtrue of the upper limit
as a function of its nominal coverage 1− αnom (the same set of bootstrap samples is used at
each 1 − αnom value). The recalibrated upper limit is then the upper limit computed with
the 1− αnom corresponding to the desired 1− αtrue. However, this is still an approximation
since the calibration function was determined by a bootstrap method. In principle one could
recalibrate the calibrated limit and obtain an even better result, but such calculations quickly
become very complex.

Typical candidates for recalibration are the standard interval (40) and the percentile
interval (46). In the latter case the recalibration procedure amounts to a double bootstrap.

3.6 Nuisance parameters

In principle the Neyman construction can be performed when there is more than one param-
eter; it simply becomes a multi-dimensional construction, and the confidence belt becomes a
“hyperbelt”. If some parameters are nuisances, they can be eliminated by projecting the final
confidence region onto the parameter(s) of interest at the end of the construction. However,
there are two difficulties: the conceptual one of designing an ordering rule that minimises
the amount of overcoverage introduced by the projection [Pun06], and the more practical
one of performing multi-dimensional constructions.

Several simpler, approximate solutions are available. We already discussed two of them:
asymptotic approximations in section 3.4 and the bootstrap in section 3.5. A third approach
inverts the order of the steps in the multi-dimensional Neyman construction: First eliminate
the nuisance parameters ν from the pdf f(x; θ, ν) of the data x and then perform a one-
dimensional interval construction on the parameter of interest θ. The elimination step can
be done by integration over a proper prior distribution π(ν):

f(x; θ, ν) → f †(x; θ) ≡
∫
f(x; θ, ν) π(ν) dν . (48)
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Although this is clearly a Bayesian step, nothing prevents one from studying the frequentist
properties of intervals derived from f † [CH92; TC05].

Another possibility is to eliminate the nuisance parameters by profiling the pdf:

f(x; θ, ν) → f ‡(x; θ) ≡ f(x; θ, ˆ̂ν(θ)) . (49)

Here ˆ̂ν(θ) is the profile MLE of ν, which maximises f(x; θ, ν) at the observed value of x
and at the given value of θ. Even though ˆ̂ν(θ) depends on the data, the interval for θ is
constructed under the assumption that, for a given θ, the true value of ν is known and
equal to ˆ̂ν(θ). In other words, f ‡(x; θ) is treated as a properly normalised pdf for x [CL00;
SWW09].

It is important to keep in mind that the coverage of the simpler solutions is not guar-
anteed. It must therefore be checked, at least at a few representative points of parameter
space (in both θ and ν).

To illustrate various techniques for handling nuisance parameters we consider a slight
generalisation of the background-subtraction problem analysed in section 3.3.4. We have
measured a number of events n that follows a Poisson distribution with mean θ+ ν, where θ
is a signal of interest and ν a background contamination. Neither θ nor ν is known, but we
have an auxiliary measurement of ν in the form of a Poisson-distributed number of events k,
with mean τν, where τ is a known constant. The joint probability mass function of n and k
is

f(n, k; θ, ν) = f1(n; θ, ν) f2(k; ν) =
(θ + ν)ne−θ−ν

n!

(τν)ke−τν

k!
. (50)

The likelihood ratio for testing a given value of θ is

λ(n, k; θ) =
f(n, k; θ, ˆ̂ν(θ))

f(n, k; θ̂, ν̂)
, (51)

where (θ̂, ν̂) is the MLE of (θ, ν) and ˆ̂ν(θ) is the profile MLE of ν. All these MLEs are
constrained to be positive for physical reasons. Assuming we have observed n = nobs and
k = kobs, from which we can derive estimates θ̂obs, ν̂obs, and ˆ̂νobs(θ), one can consider the
following eight methods for constructing an (1− α) CL interval for θ:

1. Likelihood-ratio test inversion: This is an “exact” frequentist method, in the sense that
it never undercovers. The interval is defined as the set of θ values for which

min
ν

{
P
[
−2 lnλ(N,K;θ) ≤ −2 lnλ(nobs, kobs ; θ)

∣∣∣ θ, ν]} ≤ 1− α . (52)

The notation P [E | θ, ν] indicates the probability of event E when f(n, k | θ, ν) is the
true distribution of (N,K). With q1−α(θ, ν) the (1− α)-quantile of the distribution of
−2 lnλ(N,K |θ), equation (52) is equivalent to:

− 2 lnλ(nobs, kobs ; θ) ≤ q1−α(θ) ≡ max
ν

q1−α(θ, ν) . (53)

The minimisation and maximisation in these interval definitions can be viewed as a kind
of worst-case analysis that guarantees frequentist coverage, and possibly overcoverage,
for all physical values of ν at a given θ.
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2. Naive method: Given the relative computational complexity of the test-inversion method,
it may be worthwhile to compare it to the following simple approach. Under model (50),
the MLE of θ is θ̂obs = nobs − kobs/τ . Ignoring the physical constraint θ̂obs ≥ 0, the
variance of this MLE is θ + ν + ν/τ , which can be estimated by nobs + kobs/τ

2. Thus
an approximate (1− α) CL interval for θ is given by the intersection of[

θ̂obs − z1−α
2

√
nobs +

kobs

τ 2
, θ̂obs + z1−α

2

√
nobs +

kobs

τ 2

]
, (54)

with the physical region θ ≥ 0, where zγ is the γ-quantile of the standard normal
distribution.

3. Asymptotic likelihood-ratio test: This is the method described in section 3.4: a test
inversion as in equation (53), but with q1−α(θ) approximated by the (1 − α)-quantile
χ2

1,1−α of a χ2 distribution for one degree of freedom.

4. Bayesian elimination: Here the auxiliary measurement f2(k; ν) is replaced by a prior
π(ν) for ν. With proper normalisation this is:

π(ν) =
τ(τν)ke−τν

Γ(k + 1)
, (55)

and f1(n; θ, ν) is integrated over π(ν) to obtain a distribution of n that depends on θ
only:

f †(n; θ) =

∫
f1(n; θ, ν) π(ν) dν . (56)

The likelihood ratio is now

λ†(nobs; θ) =
f †(nobs; θ)

f †(nobs | θ̂)
, (57)

where θ̂ maximises f † at the observed value nobs of N . One then obtains the (1− α)-
quantile qBayes,1−α(θ) of the distribution of −2 lnλ†(N ; θ) under f †(n; θ), and θ values
for which −2 lnλ†(nobs; θ) ≤ qBayes,1−α(θ) form the desired interval.

5. Simple percentile: This is the bootstrap method of section 3.5.2: Intervals are computed
from the α

2
- and 1 − α

2
-quantiles of the distribution of the estimator θ̂ = max(N −

K/τ, 0). This distribution is derived from f(n, k; θ̂obs, ν̂obs), where θ̂obs and ν̂obs are
determined from nobs and kobs.

6. Automatic percentile: This is the second method described in section 3.5.2. Let
G(θ̂; θ, ν) be the cumulative distribution of the estimate θ̂. The interval endpoints
θ1 and θ2 are the solutions of G(θ̂obs; θ1, ˆ̂ν(θ1)) = 1− α

2
and G(θ̂obs; θ2, ˆ̂ν(θ2)) = α

2
.

7. Likelihood-ratio bootstrap: Again a test inversion as in equation (52), but instead of
minimising the likelihood-ratio tail probability with respect to ν, it is evaluated at
ν = ν̂obs. Thus the confidence region is defined as the set of θ values for which

P
[
−2 lnλ(N,K;θ) ≤ −2 lnλ(nobs, kobs;θ)

∣∣∣ θ, ν̂obs

]
≤ 1− α . (58)
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If we write qbootstrap,1−α(θ, ν̂obs) for the (1−α)-quantile of the distribution of−2 lnλ(N,K;θ)
under f(n, k; θ, ν̂obs), the above inequality is equivalent to

− 2 lnλ(nobs, kobs;θ) ≤ qbootstrap,1−α(θ, ν̂obs) . (59)

8. Likelihood-ratio profile bootstrap: This is a variation on the previous method, where
ν̂obs is replaced by ˆ̂νobs(θ) in equations (58) and (59). It essentially corresponds to the
profile method of equation (49).

θ

At each nobs, from left to right:

1. LR Test Inversion

2. Naïve

3. Asymptotic LR Test

4. Bayesian Elimination

5. Simple Percentile

6. Automatic Percentile

7. LR Bootstrap

8. LR Profile Bootstrap θ

Figure 4: Interval constructions for the signal rate θ in a Poisson signal plus background problem;
nobs and kobs are the numbers of events observed in the signal+background and background-only
measurements, respectively, and τ is the known ratio of mean backgrounds between the two mea-
surements. (a) The case kobs = 0; (b) the case kobs = 10. At each value of nobs, eight vertical
line segments represent 90% CL intervals for θ according to the methods listed in the legend on the
left. A missing line segment indicates that the corresponding interval is empty or collapsed to the
singleton {0}.

These interval constructions are compared in figure 4 for the cases τ = 3 with kobs = 0
(a) and kobs = 10 (b), and for several values of nobs. Differences between the methods
are particularly pronounced at low nobs and kobs. In particular for nobs = kobs = 0 the
naive and simple percentile intervals have zero length. In the latter case this is due to the
use of MLEs to form the bootstrap distribution f(n, k; θ̂obs, ν̂obs), which is degenerate when
the parameter estimates are both zero. In principle this could be remedied by choosing
different estimators. At low nobs values, the naive interval has the additional problem of
extending into the unphysical region, resulting in unreasonably tight constraints on θ. This
interval can certainly not be recommended. Among the other constructions, one notes that
the asymptotic interval tends to be systematically shorter than the exact one, whereas the
likelihood-ratio bootstrap and profile bootstrap intervals are often in good agreement with
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the latter. The performance of these methods is perhaps more easily judged by examining
their frequentist coverage. One can plot the coverage as a function of θ at a fixed value of
ν, or make a two-dimensional plot of coverage versus θ and ν, or plot as a function of θ
the minimum and maximum coverages obtained when ν varies over a given range. Figure 5
shows the latter option, for 0 ≤ ν ≤ 20. As expected, the exact test-inversion method
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Figure 5: Bands showing the frequentist coverage versus θ of eight interval constructions for the
Poisson signal plus background problem discussed in the text. The parameter τ is set to 3. The
boundaries of the bands indicate the minimum and maximum coverage obtained by varying ν in the
range [0, 20]. The 90% nominal coverage is indicated by a horizontal line in each plot.

never undercovers, but it can substantially overcover. The naive, asymptotic, and simple
percentile methods all have significant undercoverage at low values of θ. On the other hand,
the likelihood-ratio bootstrap and profile bootstrap methods both perform remarkably well.
For all methods the coverage tends to improve as θ increases. This conforms with the
expectation that these methods should perform well in the large sample limit, which for
Poisson processes is attained as the mean θ goes to infinity.

4 Bayesian methods

As already emphasised in the introductory section 1, the output of a Bayesian analysis is
always the complete posterior distribution for the parameter(s) of interest. However, it is
often useful to summarise the posterior by quoting a region with a given probability content.
Such a region can be an interval or a union of intervals. Several schemes, or “ordering rules”,
are available:

• Highest-posterior-density regions (HPD): Any parameter value inside such a region
has a higher posterior probability density than any parameter value outside the re-
gion, guaranteeing that the region will have the smallest possible length (or volume).
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Unfortunately this construction is not invariant under reparameterisations, and as ex-
ample 4 will show, this lack of invariance can result in poor frequentist coverage for
some parameter values (of course this will only be of concern to a frequentist or an
objective Bayesian).

• Equal-tailed intervals: These are intervals that span equal posterior probabilities on
each side of the posterior median. For example, a 68% equal-tailed interval extends
from the 16th to the 84th posterior percentiles. These intervals are equivariant un-
der one-to-one reparameterisations that are continuous from the left6. However, they
typically only make sense when the posterior is unimodal7, and their generalisation to
multi-dimensional parameters is non-trivial. Furthermore, if a parameter is constrained
to be non-negative, an equal-tailed interval will usually not include the value zero (an
exception may occur if the posterior has a substantial probability mass at zero); this
may be problematic if zero is a value of special physical significance.

• Upper and lower limits: For one-dimensional posterior distributions, these one-sided
intervals can be defined using percentiles.

• Likelihood regions: These are standard likelihood contours, i.e. regions of parameter
values for which the likelihood is larger than for any parameter value outside the
region. The size of the region is determined by the desired posterior credibility. Such
regions are metric independent and robust with respect to the choice of prior [Was89].
In one-dimensional problems with physical boundaries and unimodal likelihoods this
construction yields intervals that have a smooth transition from one-sided to two-sided.

• Lowest posterior loss regions: A more foundational approach to Bayesian interval con-
struction starts with a loss structure [BS94]. Suppose that we can in some way quantify
the loss `{θ0, θ} incurred by using the parameter value θ0 when the true value is θ.
After having observed data x, our posterior expected loss is

l{θ0; x} =

∫
`{θ0, θ} p(θ; x) dθ , (60)

where p(θ; x) is the posterior density. A natural point estimate of θ is then the value
that minimises this posterior expected loss, and a natural credible region is the set of θ
values for which the posterior expected loss is smaller than for any value outside the set,
subject to a credibility constraint. A possible choice of loss function is the quadratic loss
— `{θ0, θ} = (θ0 − θ)2 — which yields the posterior mean as point estimate. Another
choice is zero-one loss — `{θ0, θ} = 0 if |θ0− θ| ≤ ε, and `{θ0, θ} = 1 otherwise, where
ε is a constant. As ε goes to zero this loss function leads to the posterior mode as point
estimate and to credibility regions that have highest posterior density. Many more loss
functions can be devised, but in the absence of any subjective preference, information-
theoretic arguments lead to the concept of intrinsic discrepancy loss [Ber05], which is

6A reparameterisation θ → η(θ) is continuous from the left if lim
θ↑θ0

η(θ) = η(θ0).

7A probability density function with a single maximum is called unimodal.
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defined as the symmetrised Kullback–Leibler divergence between the model indexed by
θ0 and that indexed by θ:

δ{θ0, θ} = min
{
κ{p(x; θ0); p(x; θ)}, κ{p(x; θ); p(x; θ0)}

}
, (61)

with

κ{p(x; θ0); p(x; θ)} =

∫
p(x; θ) ln

p(x; θ)

p(x; θ0)
dx (62)

(for discrete sample spaces the integral is replaced by a sum). From this definition it
follows that the intrinsic discrepancy loss between two models can be interpreted as
the minimum expected log-likelihood ratio in favour of the model that generated the
data. Credible regions derived from this loss function are labeled “intrinsic”. They
enjoy many useful properties, including equivariance under parameter transformation,
and they are available in multi-dimensional settings. A one-dimensional example is
given in example 4.

Users of Bayesian procedures are generally advised to assess the sensitivity of their result to
the choice of prior. Furthermore, if the prior is of the so-called non-informative variety, the
behaviour of the result under repeated sampling (i.e. the frequentist coverage) should also
be investigated.

In the context of interval construction, it is worth mentioning that non-informative priors
can be designed in such a way that the resulting posterior intervals have a frequentist coverage
that matches their Bayesian credibility to some order in 1/

√
n, n being the sample size.

When there are no nuisance parameters and the parameter of interest is one-dimensional,
the matching prior to O(1/n) for one-sided intervals is Jeffreys’ prior :

πJ(θ) ∝

√
E
[
− d2

dθ2
lnL(x; θ)

]
. (63)

Frequentist coverage is harder to achieve in higher dimensions, but the Bayesian reference
analysis approach has obtained good results [BS94]. This is an objective Bayesian method
based on information-theoretic considerations. In spite of being non-subjective, it provides
results with a credibility interpretation: Such results would be obtained by a person whose
prior beliefs have minimal effect, relative to the data, on posterior inferences. An application
to cross section measurements in high energy physics is described in [DJP10].

The next subsection illustrates Bayesian interval constructions with an example that
appears simple and yet can lead to serious difficulties if not handled properly. Sections 4.1
and 4.2 summarise the calculation of Bayesian intervals for binomial efficiencies and Poisson
means, thereby complementing the two frequentist interval calculations given in sections 3.3.3
and 3.3.4. The Bayesian calculations are based on Jeffreys’ prior, and the resulting intervals
are therefore known as Jeffreys intervals.

Example 4 (Measuring track momenta) Consider the measurement of particle trans-
verse momenta in a tracking chamber immersed in a solenoidal magnetic field. A simple
model is that for a given particle the charge-signed transverse momentum is the inverse of
the radius of curvature ρ of its track, and that the measured curvature radius has a Gaussian



28 4 BAYESIAN METHODS

distribution with standard deviation σ proportional to the chamber resolution and inversely
proportional to the magnetic field strength. Thus, if x is the measured transverse momentum
and θ its true value, the likelihood function has the form:

L(x; θ) ∝ e−
1
2

(1/x−1/θ
σ

)2
. (64)

A straightforward calculation shows that Jeffreys’ prior is proportional to 1/θ2. The properly
normalised posterior is therefore

p(θ;x) =
e−

1
2

(1/x−1/θ
σ

)2
√

2π σ θ2
. (65)

This posterior is shown in figure 6(a) for the case σ = 1 and x = 1. There are two local
maxima, at θ± = (−1 ±

√
1 + 8x2σ2)/(4xσ2), corresponding to two possible charge assign-

ments to the observed track. As |x| → ∞, the posterior density reaches equal heights at
these maxima, reflecting the ambiguity in charge determination at large momenta. However,
the posterior mode is a very biased estimate of θ since |θ±| never exceeds 1/(

√
2σ). Highest-

posterior-density (HPD) credible regions are shown in figure 6(b): They consist of a single
interval at low |x|, and of the union of two intervals at large |x|. At large |x| the credibility
“belt” (i.e. the set of credible regions viewed in (x, θ) space) consists of two horizontal bands
that are bounded away from large θ values. As a result, the frequentist coverage of HPD
regions is zero at large |θ|! This may surprise in view of the facts that the posterior (65)
for the transverse momentum θ can be derived from a Gaussian posterior for the curvature
radius ρ via the transformation ρ→ θ = 1/ρ, and that HPD intervals for a Gaussian poste-
rior have exact frequentist coverage. The problem, of course, is that HPD intervals are not
equivariant under reparameterisation. This suggests a simple solution, which is to construct
an HPD interval for ρ and to invert the endpoints to obtain a credible region for θ, taking
care of the case where the ρ interval contains zero. Applying this idea to the 68% credible
interval [1/x− σ, 1/x+ σ] for ρ leads to the following credible region for θ:

[
1

1/x+ σ
,

1

1/x− σ

]
if |x| < 1/σ, and]

−∞, 1

1/x− σ

]
∪
[

1

1/x+ σ
, +∞

[
if |x| > 1/σ.

(66)

This is not an HPD region in the θ parameterisation, but its coverage is 68%, exactly
matching its credibility.
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θ

θ

θ θ

Figure 6: Credible region construction for a transverse momentum with true value θ and observed
value x in a tracking chamber immersed in a magnetic field. (a) The posterior density for x = 1
(solid line), superimposed on the posterior expected intrinsic loss function (dashes). (b)-(d): The
68% credible intervals (shaded regions) in θ as a function of x, for highest posterior density, equal-
tails, and lowest intrinsic loss constructions, respectively. The vertical dotted lines in (d) are
asymptotes of the boundaries of the credibility belt. For x values between these lines the credible
region is a single interval; outside these lines it is the union of two open intervals (equation (66)).

Figure 6(c) shows the 68% credibility belt for Bayesian equal-tailed intervals. Again, the
outer contour of the belt becomes horizontal at large |x|, resulting in zero coverage for large
θ values. The transformation ρ → θ = 1/ρ is one-to-one but not continuous from the left,
explaining why the nice properties of equal-tailed intervals for ρ do not transfer to θ.

Finally we examine intrinsic loss credible regions. The intrinsic discrepancy loss, equa-
tion (61), becomes

δ{θ0, θ} =
1

2

(
1/θ0 − 1/θ

σ

)2

. (67)

The posterior expected intrinsic discrepancy loss is then

d{θ0;x} =

∫
δ{θ0, θ} p(θ;x) dθ =

1

2

[
1 +

(
1/θ0 − 1/x

σ

)2
]
, (68)
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and is plotted as a dashed line in figure 6(a). The minimum-loss estimate of θ is x, and
minimum-loss credible regions are given by equation (66) and shown in figure 6(d). In this
case the intrinsic discrepancy loss formalism has automatically produced point and interval
estimates that correspond to HPD in the curvature radius parameterisation. �

4.1 Binomial efficiencies

The binomial likelihood for an efficiency ε, after having observed x successes out of n trials,
is

L(n, x; ε) =

(
n

x

)
εx(1− ε)n−x , (69)

from which Jeffreys’ prior is found to be

πJ(ε) ∝
√

n

ε(1− ε)
. (70)

The properly normalised posterior is a Beta(x+ 1
2
, n− x+ 1

2
) distribution:

p(ε;x) =
εx−

1
2 (1− ε)n−x− 1

2

B(x+ 1
2
, n− x+ 1

2
)
. (71)

The endpoints of an equal-tailed, (1−α) CL Bayesian interval [εlow, εup] for ε are the α
2
- and

1− α
2
-quantiles of this posterior:

εlow = Bx+ 1
2
,n−x+ 1

2
,α
2

and εup = Bx+ 1
2
,n−x+ 1

2
,1−α

2
. (72)

These can be compared with the frequentist formulæ (29) and (30). In contrast with Clopper–
Pearson intervals, Jeffreys intervals tend to be shorter but do not guarantee exact coverage.
The coverage of both constructions oscillates as a function of the true value of ε. For
Clopper–Pearson intervals these oscillations all remain above the nominal confidence level
1− α, whereas for Jeffreys intervals they straddle 1− α [Cai05].

4.2 Poisson means

For a Poisson-distributed number of events n the likelihood is

L(n; θ) =
(θ + ν)n e−θ−ν

n!
, (73)

where, as before, θ is the signal strength of interest and ν is the level of a known background
contamination. Jeffreys’ rule (63) gives:

πJ(θ) ∝ 1√
θ + ν

, (74)

and the corresponding posterior is a shifted Gamma distribution:

p(θ;n) =
(θ + ν)n−

1
2 e−θ−ν

Γ(n+ 1
2
) [1− P (n+ 1

2
, ν)]

, with P (a, ν) ≡
∫ ν

0

ta−1e−t

Γ(a)
dt . (75)
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An (1− α) CL upper limit θ1−α is given by the (1− α)-quantile of this posterior:

1− α =

∫ θ1−α

0

p(θ;n) dθ =
P (n+ 1

2
, ν + θ1−α)− P (n+ 1

2
, ν)

1− P (n+ 1
2
, ν)

=
P [χ2

2n+1 ≤ 2(ν + θ1−α)]− P (n+ 1
2
, ν)

1− P (n+ 1
2
, ν)

, (76)

where, similarly to what was done in section 3.3.4, we converted an incomplete Gamma
function into the tail probability of a χ2 distribution. Solving for the latter yields

P [χ2
2n+1 ≤ 2(ν + θ1−α)] = 1− α′ , with 1− α′ ≡ 1− α + αP (n+

1

2
, ν) . (77)

Hence we find

θ1−α =
1

2
χ2

2n+1,1−α′ − ν , (78)

which can be compared to equation (34). In contrast with the frequentist result, the Jeffreys
upper limit never becomes negative, thanks to the dependence of α′ on ν.

Figure 7: Frequentist coverage of 68% CL Bayesian central intervals for the mean of a Poisson
distribution, using Jeffreys’ prior. The coverage is evaluated in increments of 0.1 in the value of
the true Poisson mean, and the Bayesian credibility of the construction is indicated by the solid
horizontal line.

Figure 7 shows how the coverage of the Jeffreys limit oscillates as a function of the true
value of θ, with downward oscillations dipping below the Bayesian credibility of the interval.
For this reason a flat prior is sometimes preferred, as the resulting coverage oscillations
remain above the credibility. For a flat prior the upper limit is given by:

θflat
1−α =

1

2
χ2

2n+2,1−α′′ − ν , where 1− α′′ ≡ 1− α + αP (n+ 1, ν) . (79)
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The good coverage properties of the flat prior are only true for upper limits, however; for
lower limits and two-sided intervals Jeffreys’ rule performs better.

Table 3: Bayesian interval constructions for the mean of a Poisson distribution when n events are
observed. All results were obtained with Jeffreys’ prior. The ordering rules shown are 95% CL
upper limit (column 2), 68% CL equal-tailed interval (column 3), and 95% and 68% CL lowest
posterior-expected intrinsic discrepancy loss (columns 4 and 5).

Bayesian intervals with Jeffreys’ prior
Upper limit Equal-tailed Lowest post. exp. intr. loss

n 95% CL 68% CL 95% CL 68% CL
0 1.92 [0.02, 0.99] [0.00, 1.92] [0.02, 0.91]
1 3.90 [0.42, 2.59] [0.01, 3.93] [0.41, 2.57]
2 5.53 [1.02, 3.97] [0.28, 5.82] [1.03, 3.97]
3 7.03 [1.72, 5.28] [0.69, 7.48] [1.71, 5.27]
4 8.46 [2.45, 6.54] [1.17, 9.03] [2.45, 6.54]
5 9.83 [3.22, 7.77] [1.72, 10.50] [3.22, 7.77]
6 11.18 [4.01, 8.98] [2.32, 11.93] [4.01, 8.98]
7 12.49 [4.82, 10.17] [2.94, 13.33] [4.82, 10.17]
8 13.79 [5.64, 11.35] [3.59, 14.69] [5.64, 11.35]
9 15.07 [6.47, 12.52] [4.25, 16.03] [6.47, 12.52]

10 16.33 [7.31, 13.69] [4.94, 17.35] [7.31, 13.68]

For the Poisson model the intrinsic discrepancy loss is given by

δ{θ0, θ} = |θ0 − θ| −
[
ν + min(θ0, θ)

] ∣∣∣∣ln ν + θ0

ν + θ

∣∣∣∣ , (80)

and its posterior expectation can be computed numerically. Bayesian intervals derived from
this loss function are shown in table 3, together with regular upper limits and equal-tailed
intervals. Note that the 95% CL intrinsic interval coincides with the upper limit when zero
events are observed. This is due to the fact that in order to obtain a higher credible interval
one has to tolerate a higher loss, which eventually becomes larger than the loss at θ = 0.
At 99% CL for example, the intrinsic interval coincides with the upper limit for N = 0, 1,
and 2. This unification of two-sided intervals and upper limits is reminiscent of Feldman–
Cousins intervals in the frequentist case, where it could be used to test a parameter value
on the boundary. However, it does not have the same significance here, because the duality
between confidence intervals and hypothesis tests only exists in the frequentist paradigm.

5 Graphical comparison of interval constructions

The effect of a physical boundary on frequentist and Bayesian interval constructions is illus-
trated in figures 8 and 9 for the measurement of the mean θ of a Gaussian with unit standard
deviation. The true mean θ is constrained to be positive. All intervals are based on a single
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observation x, which can be positive or negative due to resolution effects. This is a simpli-
fied model corresponding for example to the measurement of the square of a neutrino mass
discussed in [FC98]. As pointed out in section 2, intervals have many properties that are
worth studying: here we only examine the Bayesian credibility of frequentist constructions
and the frequentist coverage of Bayesian constructions.

Figure 8 shows only frequentist constructions. Due to the positivity constraint on θ, the
68% CL equal-tailed (or central) interval (figure 8(a)) is empty whenever the observation x
is below −1. For x between −1 and +1 the interval is an upper limit, and for x higher than
+1 it is two-sided. Since this is an exact frequentist construction, its coverage is 68% for all
physical values of θ. From a frequentist point of view empty intervals are not meaningless:
they simply indicate that no physical value of θ can account for the observation at the stated
confidence level. However, empty intervals have a drastic effect on Bayesian credibility. We
can investigate this with the help of Jeffreys’ prior, which for this problem is zero for θ < 0
and a positive constant for θ ≥ 0. For each value of x the integral of the posterior density over
the corresponding θ interval yields the latter’s credibility. The result is shown in figure 8(b):
the credibility vanishes for x < −1, then rises sharply up to a maximum at x = 1, and finally
for x > 2 it settles down to a value very close to the frequentist coverage.

θ

θ

θ

θ

Figure 8: Frequentist interval constructions. Panels (a), (c), (e) and (g) show graphs of θ versus
x, with dotted lines indicating the lower boundary of the physical region. Panels (b), (d), (f) and
(h) show the corresponding Bayesian credibility levels based on Jeffreys’ prior, with dashed lines
indicating the frequentist coverage.

The remaining pairs of panels in figure 8 are similarly organised, showing a frequentist
construction on the left and the corresponding Bayesian credibility on the right. It can be
seen that upper limits have the same credibility problem as central intervals. The remaining
two frequentist constructions mitigate the credibility problem by avoiding empty intervals.
Feldman-Cousins intervals, shown in figure 8(e) and (f), use x as estimator of θ and are
based on a likelihood ratio ordering rule [FC98]. They still have low credibility for negative
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X values. Mandelkern–Schultz intervals, presented in figure 8(g) and (h), use max{0, X} as
estimator of θ and are based on an equal-tails ordering rule [MS00]. These intervals are the
same for any negative X as for zero X, resulting in excess credibility at negative X.

θ

θ

θ

θ

θ

θ

θ

θ

Figure 9: Bayesian interval constructions. Panels (a), (c), (e) and (g) show graphs of θ versus
x, with dotted lines indicating the lower boundary of the physical region. Panels (b), (d), (f) and
(h) show the corresponding frequentist coverage levels, with dashed lines indicating the Bayesian
credibility.

Figure 9 shows four Bayesian constructions in paired panels. For each pair, the left
panel shows the credibility belt and the right one the corresponding frequentist coverage.
All constructions use Jeffreys’ prior for θ and differ only by the ordering rule used. Panel
pairs (a) and (b), (c) and (d), and (e) and (f) use equal-tailed, upper limit and highest
posterior density ordering, respectively. On panel (g) and (h) the ordering is according to
the intrinsic discrepancy loss, which for this problems equals δ{θ0, θ} = (θ − θ0)2/2 and
coincides with quadratic loss. All four constructions have reasonable frequentist coverage,
except near θ = 0, where the curves for equal-tailed and intrinsic intervals dip to zero.

A noteworthy feature of both figures 8 and 9 is that frequentist coverage and Bayesian
credibility always agree with each other when one is far enough from the physical boundary.

6 The role of intervals in search procedures

Suppose that we are using a collider experiment to search for a new particle with unknown
production rate θ. From a statistical point of view this problem can be formulated as a
hypothesis test of

H0 : θ = 0 versus H1 : θ > 0 , (81)

since H0 corresponds to non-existence of the particle and H1 to its existence. Here we
are following the formalism in the test inversion section 3.2. In a frequentist approach we
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calculate a p-value p0 to test H0, and claim discovery if p0 ≤ ε, where ε is a pre-specified type
I error rate (typically 2.87 · 10−7, corresponding to 5σ in the tail of a Gaussian distribution).
It is then customary to accompany the discovery claim with point and interval estimates
of θ, with the interval being two-sided and providing 68% confidence. If on the other hand
p0 > ε, we fail to reject H0. However, this decision does not imply that all values of θ under
H1 are now rejected. In particular, there are values of θ that the experiment is simply not
sensitive to, and values that the data won’t allow us to exclude. Hence we need to investigate
this more closely: For which values θ0 can the hypothesis H ′1 : θ = θ0 be excluded? More
precisely, we need to test:

H ′1[θ0] : θ = θ0 versus H ′0[θ0] : θ < θ0 , (82)

where for later convenience we specified the tested value of θ as an argument to the hypothe-
ses. Comparing with equation (3) in section 3.2 shows that the set of θ0 values for which
H ′1[θ0] cannot be excluded, that is, the set of particle production rates that our data cannot
exclude, is of the form [0, θup] for some upper limit θup. The value of θup depends on the size
of test (82). A common choice in high energy physics is 5%, so that the upper limit θup will
have 95% CL.

From a frequentist point of view there are two problems with the scenario of discov-
ery versus non-discovery just outlined: one concerns coverage, and the other measurement
sensitivity. We discuss these issues in the next two subsections.

6.1 Coverage

When we claim discovery, we typically quote a 68% CL, two-sided interval on the new particle
production rate θ. When we fail to claim discovery, we quote a 95% CL upper limit. What is
the reference ensemble (see section 3.1.2) of these confidence level statements? It might seem
sensible to refer the 68% CL intervals to the ensemble E1 of all searches that claim discovery,
and the 95% CL limits to the ensemble E2 of all searches that don’t. Unfortunately this
doesn’t work, because in E2 the upper limits undercover at large values of θ and in E1 the
two-sided intervals undercover at low values of θ. One might perhaps think that this problem
would disappear if we had just one common reference ensemble instead of two; and that this
could be achieved if we decided to quote the same confidence level for both upper limits and
two-sided intervals, say 90%. However, as shown in Ref. [FC98] this doesn’t work either,
because there is then a set of intermediate values of θ where the coverage is only 85%.

The real source of the problem lies in the fact that the decision regarding the type of
interval to quote is based on the observation itself; reference [FC98] calls this policy “flip-
flopping based on the data”. There would be no undercoverage if somehow the decision
could be made before looking at the data. Since this is not possible in the context of
a search for new physics, [FC98] advocates the use of the likelihood ratio ordering rule
described in section 3.1.3. With this rule, intervals of a given confidence level are two-sided
(see figure 8(e)) when the observation is above a certain threshold, and one-sided when it
is below. However, this does not yet completely solve the problem, because as mentioned
previously, the search procedure used in practice involves three confidence levels: 5σ to
decide on a discovery claim, 95% for upper limits, and 68% for two-sided intervals. Thus, for
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example, there would still be undercoverage if one were to report 68% CL likelihood ratio
intervals only when claiming discovery, etc. The solution here is to always report both the
68% and 95% CL intervals.

6.2 Sensitivity

The sensitivity issue arises when there is no convincing evidence favouring the existence of
a new particle, and we cannot reject the background-only hypothesis H0 : θ = 0. We then
proceed to set an upper limit θup on the new particle production rate θ, typically at the 95%
confidence level. The desired interpretation of θup is that θ values above it are both within
the sensitivity range of the experimental apparatus and excluded by the observations; θ
values below θup are either outside the sensitivity range or not excluded by the observations.
Unfortunately, when θup is determined by a frequentist method, there is a finite probability
that it will exclude θ values to which the experiment is not sensitive. As a simple illustration,
consider the case where the observation is a Poisson distributed number of events x with
mean θ+ν, where ν is a known background contamination. We first encountered this example
in section 3.3.4, where the frequentist upper limit is given by equation (34). Remarkably,
that upper limit decreases as the background contamination increases, and could even be
negative. However, a negative upper limit means that all physical values of θ are excluded
by the experiment, which is clearly implausible. In the case where no events are observed,
the formula gives θup = − lnα− ν, which is negative whenever ν ≥ − lnα. In the absence of
signal, the probability of no events is e−ν and therefore the probability of a negative upper
limit could be as high as elnα = α. For a 95% CL limit this is 5%, which is considered quite
substantial by many physicists.

Several attempts have been made to handle this problem [Hig87], none entirely satis-
factory. All have to deal with the ambiguity of deciding which θ values are outside the
sensitivity reach of the experiment, and whether this set of values depends on the confidence
level of the upper limit or even on the strength of evidence provided by the data [Cou11]. To
compare approaches it is convenient to introduce some notation: let p0 be the p-value used
to test H0 in test (81) and p1(θ0) the p-value used to test H ′1[θ0] in test (82). The standard
frequentist (1 − α) CL upper limit construction rejects θ values for which p1(θ) < α. A
simple modification of this construction that addresses the sensitivity problem is to reject θ
values for which both p1(θ) < α and θ ∈ S, where S is the subset of parameter space that
contains all the θ values to which the experiment is deemed to be sensitive. There is no
unique way of defining the sensitivity set S. One approach [Kas+10] defines it as containing
all θ values that have probability at least β of being detected at the γ significance level if
H1 is true:

S =
{
θ : P

[
p0 ≤ γ | H1[θ]

]
≥ β

}
. (83)

Thus, in addition to the confidence level 1 − α, this method requires the choice of two
probabilities, β and γ.

An alternative definition of S is as the set of θ values for which the inequality p1(θ) < α
is expected to occur with probability at least β if H0 is true:

S =
{
θ : P

[
p1(θ) ≤ α | H0

]
≥ β

}
. (84)
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The advantage here is that one needs to choose only one additional probability, namely
β. The θ ∈ S requirement is sometimes called a power constraint, due to the fact that
the probabilities calculated in definitions (83) and (84) are power functions, i.e. they are
probabilities for rejecting one hypothesis when the other is true.

Although power constraint methods provide some protection against excluding parameter
values to which the experiment is not sensitive, they fail to address another problem of the
frequentist limit (34), which is that if two experiments have different background contamina-
tions but observe the same number of events, the experiment with the larger contamination
will be able to exclude more signal [Rea02]. An approach which is arguably more successful
at dealing with all manner of sensitivity problems is the so-called CLs prescription [Jun99;
Rea02]. A (1− α) CL CLs upper limit construction rejects θ values for which

CLs ≡
p1(θ)

1− p0

< α . (85)

Note that this is a stronger requirement than the standard frequentist rejection criterion
p1(θ) < α. As a result, CLs upper limits overcover from a frequentist point of view. On
the other hand, in simple problems such as setting an upper limit on a Gaussian or Poisson
mean, the CLs result agrees with the Bayesian one for a constant prior.

It should be kept in mind that the CLs prescription is nothing more than the rejection
criterion (85). Just as with standard p-values, there is complete freedom in the choice of test
statistic and method for handling nuisance parameters. Experiments at LEP, the Tevatron,
and the LHC have all adopted different conventions and strategies in this regard, and one
should be careful when attempting comparisons. In contrast with p-values however, the CLs

prescription is only used to compute upper limits.
Finally, we emphasise that Bayesian methods do not suffer from sensitivity problems due

to the fact that they fully condition on the observations.

7 Final remarks and recommendations

One way to view the great assortment of interval constructions discussed in this chapter is
as a set of answers to slightly different questions. Frequentist and Bayesian intervals with
various ordering rules can all produce different inferences from the same data set. Whether
these differences matter depends on the biases and expectations of the analyst, but also on
objective factors such as the evidence available prior to the measurement, the sample size,
systematic effects, and instrumental sensitivity. Thus if the consumer of the measurement
result is provided with more than one interval estimate, for example a frequentist, a Bayesian,
and an asymptotic construction, then he or she will better be able to judge the robustness
and significance of the final result.

A recurring problem in high energy physics is the handling of nuisance parameters. When
the sample size is large enough, asymptotic approximations based on the likelihood function
can be trusted. Care is required in small samples however. An approximate frequentist
approach is to first eliminate the nuisance parameter(s) by profiling or Bayesian integration,
and then apply a test-inversion method on the parameter of interest. Although past expe-
rience with this approach has shown it to be reliable, one is always well advised to perform
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a few spot checks of the coverage. When using a Bayesian interval construction on small
samples, one should of course evaluate the sensitivity of the final result to reasonable changes
in the prior.

Another issue arises when the parameter space has physical boundaries, especially when
the experiment has only weak sensitivity in the vicinity of such a boundary. The main
concern is to avoid reporting intervals that exclude parameter values to which the apparatus
is not sensitive. Bayesian methods appear to behave properly in this situation, but no single
frequentist method is entirely satisfactory. This is another argument for reporting more than
one type of interval.

8 Exercises

Exercise 1: Eliminating nuisance parameters by conditioning

In the frequentist paradigm, handling nuisance parameters can be a thorny problem. A
method that sometimes works is based on the idea of conditioning. To illustrate this ap-
proach, suppose we measure an event count N that is Poisson-distributed with mean µν,
where µ is the parameter of interest and ν a nuisance parameter. Assume that ν is con-
strained by the auxiliary measurement of a Poisson variate K with mean τν, where τ is a
known constant:

N ∼ Poisson(µν) , (86)

K ∼ Poisson(τν) . (87)

In high energy physics one could think of µ as the production cross section for some process
of interest and ν as a product of efficiencies, acceptances, and integrated luminosity. One
can argue that the sum M ≡ N + K provides no information about the ratio µ/τ of the
above two Poisson means, or about µ itself. It is therefore interesting to seek inferences that
condition on M . First, show that the conditional distribution of N given M is given by:

P [N = n |M = m] =

(
m

n

)(
µ

τ + µ

)n(
1− µ

τ + µ

)m−n
. (88)

This is a binomial distribution that does not involve the nuisance parameter ν; it can there-
fore be used for inference about µ. Using the results from section 3.3.3 on binomial efficiencies
for example, one can compute a confidence interval for the binomial parameter µ/(τ + µ).
Assuming you have such an interval, transform it into an interval for µ and examine what
happens when n = 0. What about when k = 0? Or when n = k = 0?

Next, suppose that the mean of N is the sum of µ and ν instead of their product, so we
have:

N ∼ Poisson(µ+ ν) , (89)

K ∼ Poisson(τν) . (90)

Can we still apply the conditioning method to eliminate the nuisance parameter ν here?
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Exercise 2: Bayesian intervals for an exponential lifetime

Consider the exponential decay example of section 3.3.2, where the probability density of
the data t is f(t; τ) = e−t/τ/τ . Derive Jeffreys’ prior for this problem and compute the
corresponding posterior. Construct equal-tailed intervals from this posterior and compare
them to the corresponding frequentist intervals in table 1. What can you conclude about
the relationship between Bayesian credibility and frequentist coverage for this problem?

Show that the intrinsic discrepancy loss for this problem is given by

δ{τ0, τ} = min

{
τ0

τ
,
τ

τ0

}
− 1 +

∣∣∣ln(τ0

τ

)∣∣∣ , (91)

and the posterior expectation of this loss by

d{τ0; t} = −
(

1 +
τ0

t

)
e−t/τ0 +

τ0

t
− 1 + γ + ln

(
t

τ0

)
+

(
2 +

t

τ0

)
E1

(
t

τ0

)
, (92)

where γ = 0.57721 56649 01532 86060 . . . is the Euler–Mascheroni constant and E1(x) =∫∞
x
e−t/t dt is the exponential integral. Plot d{τ | t} as a function of τ , for t = 1, and

compare the minimum-loss estimate of τ with its maximum-likelihood estimate. Intrinsic
loss intervals can only be computed numerically for this problem. How do they compare
with likelihood intervals? With frequentist intervals?

Exercise 3: Graphical representation of search procedures

Suppose we make a measurement X that has a Gaussian distribution with unknown mean
θ and unit width. Suppose also that the value θ = 0 has the special physical significance
of “no signal”, whereas θ > 0 represents “signal”. In this simple model, the measurement
sensitivity can be quantified by the difference ∆θ between the θ values under a given signal
hypothesis and under the no-signal hypothesis. Following the discussion in section 6.2 about
sensitivity, make a plot with p1 along the y axis and p0 along the x axis, and draw contours of
constant ∆θ (i.e. for a fixed value of ∆θ, how does p1 vary with p0 as the data X run through
its range?) Note that the line of no sensitivity, ∆θ = 0, coincides with the second diagonal.
Draw the line p0 = ε, corresponding to the threshold for rejecting the no-signal hypothesis.
A line at p1 = α corresponds to the standard frequentist exclusion limit. Draw the sensitivity
sets S defined in equations ((83) and (84)) and draw the CLs threshold of equation (85).
Note that under the no-signal hypothesis p0 values are uniformly distributed between 0 and
1. Therefore the standard frequentist probability of excluding a signal hypothesis is given
by 1 minus the abscissa of the intersection of the corresponding ∆θ contour with the line
p1 = α. Show how this probability of exclusion is non-zero even when there is no sensitivity.
Show how the CLs criterion and the other two methods avoid this problem.
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